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Abstract

2-dimensional topological field theories (2D TFTs) valued in vector spaces are commutative

Frobenius algebras. The goal of this lecture series is to generalise from the 1-category of vector

spaces to any symmetric monoidal ∞-category C , i.e. to study symmetric monoidal functors

Bord
2
! C . Choosing C to be the (2, 1)-category of linear categories, this recovers a definition

of modular functors, and choosing it to be the derived category of a ring yields a notion closely

related to cohomological field theories.

I will introduce a notion of modular∞-operads and algebras over them, construct the modular

∞-operad of surfaces M , and show that algebras over M in C are exactly 2D TFTs valued in

C . Along the way we will encounter variants modular ∞-operads (such as cyclic ∞-operads and

∞-properads) as well as a proof of the 1D cobordism hypothesis with singularities. This uses

some (mild) ∞-category theory, but no familiarity with (∞-)operads will be assumed.

The main goal will be to filter M by genus to obtain an obstruction-theoretic description of

2D TFTs with general target. Applying this to invertible TFTs one can construct a new spectral

sequence exhibiting relations between the cohomology groups of moduli spaces of curves.

Acknowledgements. As these notes are based on several projects [BS22; *modular; *cyclic;

*genus], there is a long list of people who ought to receive thanks for their support and con-

tributions. For now, I’ll delay these acknowledgements to the papers themselves, but I would

like to already thank the organisers and the participants of the master class Copenhagen and my

test-audience in Cambridge, for their curiosity and all their the insightful questions and new ideas!
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1 2D TFTs – 1-categorical and infinity categorical

This lecture is a brief introduction to ((∞, 1)-categorical) topological field theories (TFTs) with a

bias towards the kind of examples that we can later study using modular operads. Readers who are

new to the subject are encouraged to read Atiyah’s (short!) original paper [Ati88], which explains

how TFTs arise from physics, and Freed’s excellent survey [Fre12], which explains both the physics

background and why we might want to get higher categories involved.

I have also made an attempt to sketch what (∞, 1)-categories are, in the hope that this is sufficient

for those readers, who are unfamiliar with them, but are familiar with basic homotopy theoretic

concepts, to follow the rest of the lectures. However, if you truely want to learn about (∞, 1)-
categories this will not suffice.

1.1 The 1-categorical story

The definition of TFTs. According to Atiyah [Ati88] and Segal [Seg88] a 𝑑-dimensional topological

quantum field theory
1

should assign to a closed oriented (𝑑 − 1)-manifold 𝑀 a vector space Z (𝑀)
– the space of states associated to 𝑀 . Given a 𝑑-dimensional bordism 𝑊 : 𝑀 ! 𝑁 , i.e. a compact

oriented 𝑑-manifold 𝑊 and an identification of its boundary as 𝜕𝑊 � 𝑀 ⊔ 𝑁−
, the TQFT should

assign a linear mapZ (𝑊) : Z (𝑀) ! Z (𝑁), which we can think of the time-evolution of states along

𝑊 . These assignments are subject to various axioms and in fact, also require additional coherence

data. All of this data, coherence, and axioms, can be assembled in to symmetric monoidal functor

Z : Bord𝑑 −! Vect𝑘 .

Here Bord𝑑 is the 𝑑-dimensional, oriented bordism category. Its objects are closed oriented (𝑑 −1)-
manifolds, and the morphisms 𝑀 ! 𝑁 are equivalence classes of pairs (𝑊, 𝑖) of a compact oriented

𝑑-manifold 𝑊 and an orientation-preserving diffeomorphism 𝑖 : 𝜕𝑊 � 𝑀 ⊔ 𝑁−
. (Two such pairs

(𝑊, 𝑖) and (𝑊 ′, 𝑖′) are equivalent if there is an orientation preserving diffeomorphism 𝜑 : 𝑊 � 𝑊 ′

such that 𝑖′ ◦ 𝜑 = 𝑖.) Bord𝑑 has a symmetric monoidal structure with ⊔ : Bord𝑑 × Bord𝑑 ! Bord𝑑

given by disjoint union of both objects and morphisms. On the other side Vect𝑘 is the category of

vector spaces over some field 𝑘 and it has the symmetric monoidal structure given by the tensor

product over 𝑘 . For Z to be a symmetric monoidal functor it thus has to come with coherence

isomorphisms

Z (𝑀 ⊔ 𝑁) � Z (𝑀) ⊗ Z (𝑁).
This is motivated by the quantum mechanical principle that a quantum state of a disjoint union

of systems is not simply a pair of states, one in each system, but rather an element of the tensor

product of the state spaces. (In particular, not every state is an elementary tensor of the form

|𝜙⟩ ⊗ |𝜓⟩. This is the basis of quantum entanglement.)

Commutative Frobenius algebras. In dimension 2 we can explicitly classify TQFTs: there is an

equivalence between the groupoid
2

of 2D TQFTs and the groupoid of commutative Frobenius

1
In fact, according to Atiyah’s convention this would be a TQFT in dimension 𝑑 + 1. In these lecture notes we’ll stick to

the more common convention of letting 𝑑 denote the dimension of the top-dimensional manifolds that appear.

2
Note that if 𝛼 : Z ⇒ Z ′

is a symmetric monoidal natural transformation between two TQFTs, then 𝛼 is automatically

invertible. Thus the category of 𝑑-dimensional TQFTs is a groupoid.
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algebras over 𝑘 . A commutative Frobenius algebra is an algebra 𝐴 together with a non-degenerate

trace 𝜏 : 𝐴! 𝑘 , i.e. a linear functional such that for all 𝑎 ∈ 𝐴 \ {0} there is a 𝑏 ∈ 𝐵 with 𝜏(𝑎 · 𝑏) ≠ 0.

In other words, the trace 𝜏 is non-degenerate if and only if the resulting pairing

⟨𝑎, 𝑏⟩ ≔ 𝜏(𝑎 · 𝑏)

is non-degenerate in the sense that it induces an isomorphism 𝐴∨ � 𝐴. Historically, Frobenius

algebras were first studied in the context of representation theory where they are usually not

commutative [Nak39]. (Here non-degeneracy of 𝜏 is defined by requiring that 𝜏−1 (0) contains no

non-trivial left (or right) ideal.) An example of such a Frobenius algebra is the group ring 𝑘 [𝐺] of

a finite group 𝐺 with the trace given by picking out the coefficient of the unit: 𝜏(∑𝑔∈𝐺 𝑎𝑔𝑔) = 𝑎𝑒.

A natural commutative example arises from certain manifolds.

Example 1.1. If 𝑀 is a closed oriented 2𝑛-manifold whose rational cohomology is concentrated

in even degrees, then the cohomology ring 𝐻∗ (𝑀 ;Q) is a commutative Frobenius algebra over

𝑘 = Q with coevaluation 𝜏(𝛼) = 𝛼( [𝑀]) ∈ Q for 𝛼 ∈ 𝐻2𝑛 (𝑀 ;Q). Poincaré duality implies that

this is indeed a non-degenerate trace. For example 𝐴 = 𝐻∗ (CP𝑛;Q) = Q[𝑥]/𝑥𝑛+1
is a commutative

Frobenius algebra with 𝜏(∑𝑖 𝑎𝑖𝑥
𝑖) = 𝑎𝑛.

Classifying 2D TFTs. Given a 2D TQFT Z : Bord2 ! Vect𝑘 let 𝐴 ≔ Z (𝑆1) denote its value on

the circle. As every closed oriented 1-manifold is a disjoint union of circles and Z is symmetric

monoidal, we can describe the value of Z on any 1-manifold as

Z (𝑀) = Z
(

𝑛⊔
𝑖=1

𝑆1

)
�

𝑛⊗
𝑖=1

Z (𝑆1) = 𝐴⊗𝑛.

Every 2-dimensional bordism can be built under composition and gluing from a few elementary

pieces, so to fully encode the TQFT it will suffice to record its value on these pieces. The pair of

pants and disk bordism give us an algebra structure on 𝐴 with multiplication and unit

𝜇 : 𝐴 ⊗ 𝐴 = Z (𝑆1 ⊔ 𝑆1) −! Z (𝑆1) = 𝐴 and 𝜈 : 𝑘 = Z (∅) −! Z (𝑆1) = 𝐴

and reading the he disk as bordisms in the other direction we obtain a trace map

𝜏 : 𝐴 = Z (𝑆1) −! Z (∅) = 𝑘.

By composing and comparing bordisms, one checks that the algebra structure is unital, associative,

and commutative, and that the trace is non-degenerate. Thus (𝐴, 𝜏) is a commutative Frobenius

algebra. We can define a groupoid CFrob𝑘 of commutative Frobenius algebras over 𝑘 by defining

an isomorphism of Frobenius to be an isomorphism of 𝑘 vector spaces that commutes with all the

structure.

In this form the above (roughly) shows that there is a functor

Fun
⊗ (Bord2,Vect𝑘) −! CFrob𝑘

Z 7! (Z (𝑆1), . . . )

from the category (in fact groupoid) of 2-dimensional TQFTs to the groupoid of commutative

Frobenius algebras. As every 2-bordism can be built from pairs of pants and disks we can recover
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the TQFT Z from the Frobenius algebra 𝐴 ≔ Z (𝑆1). A more subtle statement is that indeed

every commutative Frobenius algebra comes from a TQFT. To see this, one needs to show that the

relations we imposed as part of the definition of a commutative Frobenius algebra indeed suffice

to deduce all relations between composite 2-bordisms. This is often referred to as a folk theorem,

but was first proven by [Abr96], see also the detailed exposition in [Koc03].

Theorem 1.2. The above functor is an equivalence between the groupoid of 2D TQFTs and the groupoid of
commutative Frobenius algebras.

We make a few observations:

1. One might question to what extend Theorem 1.2 really “classifies” 2D TQFTs, as it just

compares them to another notion. For example, it is not clear from the theorem whether there

are any non-trivial TQFTs, or e.g. how many TQFTs there are if we say fix dim𝑘 Z (𝑆1) = 4.

However, the theorem reduces a complicated infinite set of conditions (such as Z (𝑊 ∪ 𝑉) =
Z (𝑉) ◦ Z (𝑊) for any pair of composable bordisms) to a just a handful of axioms. Moreover,

the algebraic structure we reduce to has been studied before, albeit in a different form, in the

context of representation theory.

2. Given a commutative Frobenius algebra 𝐴 one can construct a comultiplication Δ : 𝐴! 𝐴⊗ 𝐴

on 𝐴 by using the pairing to dualise the multiplication. In the TQFT picture Δ is the image

of the opposite pair of pants morphism. The trace 𝜏 is a counit for this comultiplication.

One can thus also define a commutative Frobenius algebra as a 5-tuple (𝐴, 𝜇, 𝜈,Δ, 𝜏) where

(𝐴, 𝜇, 𝜈) is a commutative unital algebra, (𝐴,Δ, 𝜏) is a cocommutative counital coalgebra, and

these structures are compatible in the sense that they satisfy the Frobenius relations

(𝜇 ⊗ id𝐴) ◦ (id𝐴 ⊗ Δ) = Δ ◦ 𝜇 = (id𝐴 ⊗ 𝜇) ◦ (Δ ⊗ id𝐴).

3. Its worth noting that all the generators and relations that we have considered so far are

connected genus 0 surfaces, i.e. they are punctured 2-spheres thought of bordisms in various

ways. Thus, in some sense Bord2 is generated by genus 0 surfaces and the relations between

genus 0 surfaces are also enough to at least classify all symmetric monoidal functors from

Bord2 to Vect𝑘 .

Exploring other targets. So far all of the TQFTs we considered were valued in the symmetric

monoidal category Vect of vector spaces over 𝑘 for some field 𝑘 . The definition of TQFTs as

symmetric monoidal functors suggests an immediate generalisation for more general targets as

follows. For C a symmetric monoidal category, we define a C-valued 𝑑-dimensional TFT
3

to be a

symmetric monoidal functor

Z : Bord𝑑 −! C .
As we shall see there are many sensible choices for what C might be.

Choosing C = Vect𝑘 recovers the previous definition: a 𝑑-dimension TQFT is a Vect𝑘-valued

𝑑-dimensional TFT. We also see that 𝑘 need not really be a field; any commutative ring will do.

We could let C = sVect𝑘 be the symmetric monoidal category of super vector spaces (i.e.Z/2-graded

vector spaces where the symmetric monoidal structure introduces a sign whenever we braid to

3
We drop the “Q” from TQFT so as to not claim that anything we do has a concrete connection to quantum physics.
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odd dimensional vector spaces). An analogue of Theorem 1.2 says that sVect𝑘-valued 2D TFTs are

classified by “super commutative Frobenius algebras”. This is the natural setting for Example 1.1:

if 𝑀 is any closed oriented 𝑛-manifold, then 𝐻∗ (𝑀 ;Q) is always a super commutative Frobenius

algebra.

Indeed a more refined version of Theorem 1.2 says that C-valued 2D TFTs are always classified

by “commutative Frobenius algebra objects” in C. This holds because the proof of Theorem 1.2

does not use much about Vect𝑘 , but is rather a statement about generators and relations for the

symmetric monoidal category Bord2.

Generalising further, we can let C be a symmetric monoidal∞-category. We will discuss the various

interesting choices of such C in section 1.4. First, however, we will need to make sense of Bord𝑑 as

a symmetric monoidal ∞-category.

Linear categories. In Segal’s approach to conformal field theories [Seg88] one encounters the

notion of modular functor, which is a sort of categorification of a 2D TFT. The idea is to assign

to 𝑆1
not a vector space, but a 𝑘-linear category Z (𝑆1) = C. Then to a bordism 𝑊 : 𝑀 ! 𝑁

the modular functor should not assign a linear homomorphism, but rather a 𝑘-linear functor

Z (𝑊) : Z (𝑀) ! Z (𝑁). For example, the pair of pants bordism 𝑆1⊔𝑆1 ! 𝑆1
will induce a monoidal

product ⊗ : C ⊗𝑘 C ! C. However, as we have increased the category-level the prudent thing is

not to stop at 1-morphisms: the modular functor Z should also assign to every diffeomorphism

𝜑 : 𝑊 � 𝑊 ′
between bordisms (that both have source and target 𝑀 ! 𝑁) a natural isomorphism

Z (𝜑) : Z (𝑊) � Z (𝑊 ′) of linear functors. Summarising this in category-theoretic language we can

say that a modular functor is a symmetric monodial 2-functor

Bord2 −! k − Cat.

Here Bord2 should then be a suitable symmetric monoidal 2-category where we do not identify

diffeomorphic bordisms, but we instead introduce the diffeomorphisms as 2-morphisms. (Though,

for now, we should at least identify isotopic diffeomorphisms.) Note that this is really just a (2, 1)-
category, meaning that all its 2-morphisms are invertible. One could also allow non-invertible

2-morphisms in the form of 3-bordisms with corners; this leads to the notion of a once-extended

3D TFTs, a key source of modular functors.

Remark 1.3. To make the above definition precise, we have to specify what exactly the 2-category of

linear categories is and which tensor product we choose on it. For example, we might want to restrict

to left/right exact functors and take the Deligne tensor product. Even then, this does not quite

give the right definition of modular functor yet, as it does not allow for projective representations

or equivalently for central extensions of the bordism category. For a detailed discussion of these

issues, and in fact a classification of certain modular functors using like-minded ideas, see [BW22].

For suitable such definitions, the unit of k − Cat is the linear category of 𝑘-vector spaces Vect𝑘 and

the category of (left exact) functors Vect𝑘 ! Vect𝑘 is equivalent to the category of vector spaces

itself, with the comparison

Fun(Vect𝑘 ,Vect𝑘) −! Vect𝑘

given by evaluating on 𝑘 . Then, since the category Bord2 (∅, ∅) is the groupoid of closed surfaces

where morphisms are isotopy classes of diffeomorphisms, a modular functor gives us representa-

tion of the mapping class groups 𝜋0Diff(Σ𝑔) for all 𝑔. (If we considered a central extension of the

surface category, it gives us projective representations.)
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1.2 Bord2 as an (∞, 1)-category

For the purpose of this lecture series I’ll be a bit vague about the exact definition of an ∞-category,

but I’ll try to be precise about the interface we can use to produce ∞-categories.

What are spaces?. Let’s first discuss what we want ∞-categories to be. An ordinary category is

equivalently a category enriched in sets: for any two objects 𝑥, 𝑦 ∈ C we have a set MapC (𝑥, 𝑦) of

morphisms/maps from 𝑥 to 𝑦. Similarly, an ∞-category should be a category enriched in spaces

meaning that for any two objects 𝑥, 𝑦 ∈ C we have a space MapC (𝑥, 𝑦) of morphisms/maps from 𝑥 to

𝑦. Here a “space” should be understood as a somewhat nebulous object that captures a homotopy

type. There are a few different concrete ways of thinking about spaces:

Top = {topological spaces} ∼ CW = {CW cpxs.} ∼ Kan = {Kan cpxs.} ∼ sSet = {simplicial sets}

More precisely, the ∞-category of spaces S is the ∞-category obtained by taking any of above

1-categories and universally inverting the suitable notion of weak equivalence. So while we still

don’t precisely know what an ∞-category is, this tells us that there is a functor
4

of ∞-categories

Top −! S

that turns a topological space into a “space”. Note that this functor cannot have an inverse as it

sends all contractible topological spaces to isomorphic objects in S .

What are∞-categories?. Since we can turn topological spaces into spaces, we should also be able to

turn categories enriched in topological spaces into categories enriched in spaces, i.e. ∞-categories.

Indeed, there is a functor

ac : TopCat −! Cat∞

that takes a topologically enriched category, i.e. an ordinary category C together with a topology

on each set MapC (𝑥, 𝑦) such that composition is continuous, and turns it into an ∞-category. In

fact, every ∞-category can be obtained this way and we can think of TopCat as our “model” for

Cat∞ as long as we have the right notion of weak equivalence, namely Dwyer-Kan equivalences.

Definition 1.4. For a topologically enriched category C we define its homotopy category ℎ(C) to

be the ordinary category obtained by identifying any two morphisms 𝑓 , 𝑔 : 𝑥 ! 𝑦 in C that can be

connected by a path in MapC (𝑥, 𝑦). A functor 𝐹 : C ! D of topologically enriched categories is a

Dwyer–Kan equivalence if it satisfies

1. (fully faithful) for any two 𝑥, 𝑦 ∈ C the continuous map 𝐹 : MapC (𝑥, 𝑦) ! MapC (𝐹 (𝑥), 𝐹 (𝑦))
is a weak equivalence, and

2. (essentially surjective) for all 𝑧 ∈ D there is an 𝑥 ∈ C such that 𝐹 (𝑥) is isomorphic to 𝑧 in the

homotopy category ℎ(D).

Therefore we can define Cat∞ as the ∞-category obtained from the ordinary category TopCat by

inverting Dwyer–Kan equivalences.

4
One could refer to functors between ∞-categories as ∞-functors, but this is unnecessary notation as ∞-functors recover

ordinary functors in the sense that an ∞-functor between to 1-categories is the same as an ordinary functor.
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Warning 1.5. While it is true that every ∞-category can be represented by a topologically enriched

category, the corresponding statement for functors is a bit more subtle. If we fix two topological

categories C and D then not every ∞-functor ac(C) ! ac(D) can be represented by a topologically

enriched functor C ! D. However, this is true if we first replace C and D by certain Dwyer–Kan

equivalent topological categories.

This is one of the reasons why the model of “quasicategories” is so popular: every ∞-category can

be represented by a quasicategory and if I fix two quasicategories then every ∞-functor between

them can be represented by a map of quasicategories. Some other reasons for the popularity is that

they are quite easy to define (a quasi-category is a simplicial set that satisfies the combinatorial

“inner horn filling condition”), admit an easy construction of functor categories, and that Joyal

and Lurie have used this model to prove most of the basic facts you’ll need for every-day infinity-

category theory. The reason we won’t really be talking about quasicategories in this lecture series

is that they take a while to get used to and they obscure the idea that ∞-categories should be

categories enriched in spaces.

The homotopy hypothesis. An∞-groupoid is an∞-category where every morphisms admits and

inverse (up to homotopy). Grothendieck’s homotopy hypothesis postulates that an ∞-groupoid

should be the same as a space. This is indeed the case for any reasonable implementation of spaces

and ∞-categories. To make sense of this, consider the path-category construction

Π∞ : Top −! TopCat −! Cat∞

where Π∞ (𝑋) is the topologically enriched category whose objects are points of 𝑋 and where

morphisms 𝑥 ! 𝑦 are (Moore) paths from 𝑥 to 𝑦. Concretely, the topological space of morphisms is

Map
Π∞ (𝑋) (𝑥, 𝑦) ≔ {(𝑡, 𝛾) ∈ [0,∞) × Map(R, 𝑋) | 𝛾(𝑠) = 𝑥 for 𝑠 ≤ 0 and 𝛾(𝑠) = 𝑦 for 𝑠 ≥ 𝑡}.

Such morphisms can be composed by (𝑡, 𝛾) ◦ (𝑠, 𝛿) = (𝑡 + 𝑠, 𝛾 ∗ 𝛿) and under this composition every

path admits an inverse morphism (up to homotopy) given by the reverse path. Thus Π∞ (𝑋) lands

in the full subcategory Gpd∞ ⊂ Cat∞ of ∞-groupoids. This functor sends weak equivalences of

topological spaces to equivalences of ∞-categories and thus descends to a functor S −! Gpd∞,

which is an equivalence.

All of the above means that we can think of spaces both as topological spaces and as ∞-categories

where all morphisms are invertible. In particular, this means that if we construct a topologically

enriched groupoid 𝐺, then ac(𝐺) ∈ Cat∞ is an ∞-groupoid and thus a space. We can alternatively

obtain this space by first taking the geometric realisation |𝑁•𝐺 | of the nerve of 𝐺, which gives us a

topological space that represents the same space as ac(𝐺).
Example 1.6. This construction will be quite useful to construct certain moduli spaces. For example,

consider the topologically enriched groupoid Mfd
�
𝑑 where objects are closed oriented 𝑑-manifolds

and the mapping spaces Map(𝑀, 𝑁) are the spaces of (smooth) diffeomorphisms with the Whitney

C∞
-topology. Then the space |Mfd

�
𝑑 | = ac(Mfd

�
𝑑 ) ∈ S is the moduli space of closed 𝑑-manifolds. If

we’re worried about set theory, we might want to restrict the objects to be submanifolds of some

R𝑘
. This also hints at a way of directly constructing this moduli space as a topological space,

namely we can define a topology on the set of closed oriented 𝑑-dimensional submanifolds of

R∞ =
⋃

𝑘≥0
R𝑘

by identifying it with the quotient space∐
[𝑀 ]

Emb(𝑀,R∞)/Diff(𝑀)
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where the coproduct runs over representatives for diffeomorphism classes of manifolds and

Diff(𝑀) acts by precomposition on the space of embeddings.

Spaces of bordisms. We would now like to construct an ∞-category Bord𝑑 where for two closed

oriented (𝑑 − 1)-manifolds 𝑀 and 𝑁 the space Map
Bord𝑑

(𝑀, 𝑁) is a space of bordisms from 𝑀

to 𝑁 . The simplest
5

way of describing such a space is as a topological groupoid. As we just

discussed a topological groupoid yields an ∞-groupoid and thus a space, and if we wanted to

go through topological spaces we can simply take the geometric realisation of the groupoid we’re

about to describe. The topologically enriched groupoid Bord𝑑 (𝑀, 𝑁) has as objects tuples (𝑡,𝑊)
of 𝑡 ∈ (0,∞) and a compact oriented 𝑑-dimensional sub manifold

6 𝑊 ⊂ [0, 𝑡] × R∞
such that

𝜕𝑊 = {0} × 𝑀 ⊔ {𝑡} × 𝑁 and 𝑊 is cylindrical near the boundary, meaning that

[0, 𝜀) × 𝑀 ⊔ (𝑡 − 𝜀, 𝑡] × 𝑁 ⊂ 𝑊.

A morphism (𝑡,𝑊) ! (𝑠,𝑊 ′) in Bord𝑑 (𝑀, 𝑁) is a diffeomorphism 𝜑 : 𝑊 � 𝑊 ′
such that 𝑖′ = 𝜑 ◦ 𝑖.

We can topologise this space of morphisms using the Whitney C∞
-topology, i.e. the topology of

convergence in all derivatives.

If we geometrically realise this topological groupoid we obtain a topological space, whose homo-

topy type is

|Bord𝑑 (𝑀, 𝑁) | ≃
⊔

[𝑊 : 𝑀!𝑁 ]
𝐵Diff𝜕 (𝑊).

Here the disjoint union runs over diffeomorphism types of bordisms, i.e. the set of path components

of |Bord𝑑 (𝑀, 𝑁) | recovers the set of morphisms in the 1-category of bordisms from the start of the

lecture. Each component corresponding to the diffeomorphism class of some 𝑊 : 𝑀 ! 𝑁 is the

classifying space for the topological group Diff𝜕 (𝑊) of diffeomorphisms 𝜑 : 𝑊 � 𝑊 that restrict to

the identity on the boundary.
7

As we’ll mostly be talking about the case of 𝑑 = 2, let us recall some facts about the diffeomorphism

groups of surfaces. The group of path components 𝜋0Diff𝜕 (𝑊) is the mapping class group of 𝑊 ;

its elements are isotopy classes of diffeomorphisms of 𝑊 .

Theorem 1.7 (Smale, Earle–Eells). The diffeomorphism group of the 2-sphere and torus are equivalent to
the following Lie groups

SO(3) ≃ Diff(𝑆2) and SL2 (Z) ⋉ (𝑆1 × 𝑆1) ≃ Diff(𝑆2) .

For all other connected surfaces Σ the identity component of the diffeomorphism group is contractible and
thus Diff𝜕 (Σ) ! 𝜋0Diff𝜕 (Σ) is an equivalence.

5
Of course what is or isn’t simple is subjective, and the reader might find the approach of [Gal+09], where the authors

construct a topological space of bordisms, more straightforward.

6
In fact we could also replace R

∞
here by R

2𝑑+1
because every 𝑑 manifold can be embedded into R

2𝑑+1
by Whitney’s

embedding theorem. If you’ve seen similar definitions before, this might be confusing because Emb(𝑊,R2𝑑+1 ) is not

contractible. The reason that this doesn’t matter is that our space of morphisms is a topologically enriched groupoid and

not a topological space. We therefore don’t need that the space of embeddings 𝑊 ↩! R
∞

is contractible, we just need that

the set of embeddings 𝑊 ↩! R
2𝑑+1

is non-empty.

7
In fact, our definition of Bord𝑑 (𝑀, 𝑁 ) suggests that we should consider the smaller group Diff𝜀𝜕 (𝑊 ) ⊂ Diff𝜕 (𝑊 )

where diffeomorphisms are required to be the identity on a specified collar of the boundary. It follows from the theorem

of Cerf (about the contractibility of the space of collars) that this inclusion is a homotopy equivalence, so we can choose to

work with Diff𝜕 (𝑊 ) instead.
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The mapping class groups Diff𝜕 (Σ𝑔,𝑘) are usually infinite, always finitely presented and are well-

studied in geometric group theory.

Remark 1.8. Note that the above theorem means that Bord2 is almost a (2, 1)-category. The only

thing that keeps its mapping spaces from being 1-groupoids are Diff(𝑆2) and Diff(𝑆1 × 𝑆1). In

particular, if we consider variants of Bord2 where closed manifolds are not allowed, then they’ll be

(2, 1)-categories.

The bordism category as an ∞-category. We now assemble to above into an ∞-category. For a

more careful discussion, also in the extended case, see [CS19]. For a treatment similar to the one

given here and a discussion of why we don’t have to provide identity morphisms, see [KK24b].

We can now define Bord𝑑 as the ∞-category associated to the following topological category.

Objects are closed oriented (𝑑 − 1)-manifolds, the space of morphisms from 𝑀 to 𝑁 is given by

|Bord𝑑 (𝑀, 𝑁) |, and composition is defined as the realisation of the functor

− ∪𝑁 − : Bord𝑑 (𝑀, 𝑁) × Bord𝑑 (𝑁, 𝐿) −! Bord𝑑 (𝑀, 𝐿)

that glues two bordisms along 𝑁 . Since we have embedded our bordisms in a cylindrical way we

can glue them simply by shifting one of them and then taking a union.

𝑊 ∪𝑁 𝑉 = (𝑠,𝑉) ◦ (𝑡,𝑊) = (𝑠 + 𝑡, (𝑉 + 𝑠) ∪𝑊)

This works well with diffeomorphisms between bordisms and thus extends to a functor of topo-

logically enriched groupoids. The observant reader might complain that this Bord𝑑 does not have

identity morphisms: there is a canonical isomorphism (𝑀 × [0, 1]) ∪𝑀 𝑊 � 𝑊 , but these mor-

phisms aren’t equal. This can be addressed by modifying our model, but only at the cost of making

it more convoluted. (Though there are easier solutions if one works with topological spaces of

submanifolds, this is for example done in [Gal+09].) Instead of doing that, we can use that the

“associated category” functor ac : TopCat ! Cat∞ can be uniquely extended to the category of

quasi-unital topologically enriched categories. These are topologically enriched categories C that

are not necessarily strictly unital, but which for each 𝑥 ∈ C there exists a quasi-unit 𝑞𝑥 ∈ C (𝑥, 𝑥)
such that the maps

𝑞𝑥 ◦ − : C (𝑤, 𝑥) −! C (𝑤, 𝑥) and − ◦𝑞𝑥 : C (𝑥, 𝑦) −! C (𝑥, 𝑦)

are homotopic to the identity. We’ll briefly encounter quasi-units later again in Theorem 2.30.

1.3 Symmetric monoidal structures

In order to complete the definition of TFTs valued in a symmetric monoidal ∞-category we still

have to define what a symmetric monoidal structure on a ∞-category is and how to construct such

a structure on Bord𝑑 . We would like to make the following definition:

Definition 1.9. A symmetric monoidal ∞-category is a commutative monoid in Cat∞

Cat
⊗
∞ ≔ CMon(Cat∞).

But this just leaves us with the question of what a commutative monoid in an ∞-category is.
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An example: disjoint union of manifolds. Let’s start with a simpler example. The ∞-category

Mfd
�
𝑑 = Bord𝑑 (∅, ∅) obtained from the topological groupoid of 𝑑-manifolds and diffeomorphisms

between them should be a commutative monoid under the multiplication operation

− ⊔ − : Mfd
�
𝑑 × Mfd

�
𝑑 −!Mfd

�
𝑑

that takes the disjoint union of two 𝑑-manifolds. However, as for the gluing of bordisms in the last

lecture “taking the disjoint union” of two 𝑑 manifolds is not literally associative or commutative.

(Say if they’re each inR𝑑 × [0, 1], then we need to choose some order in which to stack them in the

[0, 1]-direction.) Of course, if we know that two 𝑑-manifolds are already disjoint submanifolds of

R𝑑 × [0, 1] then we can just take their union, which is trivially associative, unital, and commutative

whenever it is defined. (Since the Boolean algebra of subsets ofR𝑑×[0, 1] is a commutative monoid

under union.) In other words, we have a zig-zag of topologically enriched groupoids

Mfd
�
𝑑 × Mfd

�
𝑑

≃
 −− {(𝑊1,𝑊2) | 𝑊1,𝑊2 ⊂ R𝑑 × [0, 1],𝑊1 ∩𝑊2 = ∅} ∪

−−!Mfd
�
𝑑

where the leftward map is a Dwyer-Kan equivalence of topological groupoids. As passing to the

∞-category of spaces turns this equivalence into an isomorphism and so we can still think of it

as giving a binary operation on Mfd
�
𝑑 . To assert the associativity of this operation, we need to

consider disjoint unions of more than two manifolds. For a finite set 𝐴, let 𝐴+ : 𝐴⊔ {∞} be the finite

set obtained by freely adjoining a base point. Then let

Mfd
�
𝑑 (𝐴+) ≔ {𝑊 ⊂ R𝑑 × [0, 1], 𝛼 : 𝑊 ! 𝐴}

be the topologically enriched groupoid of closed submanifolds𝑊 ⊂ R𝑑
together with a continuous

map 𝛼 : 𝑊 ! 𝐴. (Morphisms are diffeomorphisms that commute with the map to 𝐴.) If we set

𝐴 = 2 = {1, 2} this recovers the previous definition as giving a map 𝑊 ! 2 is the same as giving

a disjoint decomposition 𝑊 = 𝑊1 ⊔𝑊2. This defines a functor from the category of pointed finite

sets to the category of topologically enriched groupoids

Mfd
�
𝑑 (−) : Fin∗ −! TopGpd.

Here to a morphisms 𝛽 : 𝐴+ ! 𝐵+ we assign the functor

Mfd
�
𝑑 (𝐴+) −!Mfd

�
𝑑 (𝐵+),

(𝛼 : 𝑊 ! 𝐴) 7−! (𝛽 ◦ 𝛼 : 𝑊 ′ ! 𝐵)

where 𝑊 ′ ≔ (𝛽 ◦ 𝛼)−1 (𝐵) ⊂ 𝑊 is the part of 𝑊 that is not sent to ∞ by 𝛽 ◦ 𝛼. The binary operation

can then be recovered as the zig-zag

Mfd
�
𝑑 (1+) × Mfd

�
𝑑 (1+)

(Mfd
�
𝑑 (𝜌1

) ,Mfd
�
𝑑 (𝜌2 ) )

 −−−−−−−−−−−−−Mfd
�
𝑑 (2+)

Mfd
�
𝑑 (𝜇)−−−−−!Mfd

�
𝑑 (1+)

where 𝜇 : 2+ ! 1+ is the map that sends 1, 2 7! 1. The maps 𝜌𝑖 are an instance of a more general

map

𝜌𝑎 : 𝐴+ −! 1+

𝑥 7!

{
1 if 𝑥 = 𝑎

∞ otherwise

that we can define for all finite sets 𝐴 and elements 𝑎 ∈ 𝐴.
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Commutative monoids in an ∞-category. Motivated by the above example, let us now define

what a commutative monoid in a ∞-category C is. For simplicity, we will assume that finite

products exist in C, though this is not really necessary.

Definition 1.10. A commutative monoid in C is a functor 𝑀 : Fin∗ ! C such that for every finite

set 𝐴 the map

(𝜌𝑎)𝑎∈𝐴 : 𝑀 (𝐴+) −!
∏
𝑎∈𝐴

𝑀 (1+) (1)

is an equivalence.

As for the manifold example we can obtain a multiplication on 𝑀 (1)+ via the zig-zag

𝑀 (1+) × 𝑀 (1+)
≃

 −−−−
(𝜌

1
,𝜌2 )

𝑀 (2+)
𝜇
−! 𝑀 (1+)

where the left map is an equivalence by the Segal condition. This multiplication map is unital,

associative, and commutative, up to higher coherence, because it comes as part of the functor 𝑀 .

Definition 1.11. The ∞-category of commutative monoids in C is the full subcategory

CMon(C) ⊂ Fun(Fin∗, C)

on those functors that satisfy the Segal condition from Eq. (1). In particular, the ∞-category of

symmetric monoidal ∞-categories is the full subcategory

Cat
⊗
∞ ≔ CMon(Cat∞) ⊂ Fun(Fin∗,Cat∞).

We can define the symmetric monoidal structure on Bord𝑑 analogously to how we defined the

disjoint union on Mfd
�
𝑑 .

Remark 1.12. Commutative monoids in the ∞-category of spaces S are also known asE∞-algebras

in spaces, or special Γ-spaces. If we additionally require that the induced multiplication on 𝜋0𝑀 (1+)
has inverses, then we get very special Γ spaces, or equivalently infinite loop spaces.

Remark 1.13. The above definition of symmetric monoidal ∞-categories is equivalent, via the

straightening-unstraightening equivalence, to the one given in [Lur]. The upside of the definition

given here is that it does not mention cocartesian fibrations and instead directly considers functors

to Cat∞. The downside is that often the best way to define a functor to Cat∞ is exactly be writing

down a cocartesian fibration and using straightening (thus factoring through Lurie’s description),

but in fact this is not needed for the examples we consider here. In the case of Bord𝑑 we can directly

write down a functor Fin∗ ! TopCat! Cat∞ and trying to write it as a cocartesian fibration would

only complicate matters.

A more conceptual way of arriving at the Segal condition, which will be easier to generalise, is

as follows. For this we consider a generalisation of the maps 𝜌𝑎 : 𝐴+ ! 1+. This is an instance

of the general framework of “algebraic patterns” developed by Chu–Haugseng [CH21], which we

will implicitly be using throughout the lecture series. The reader interested in homotopy coherent

structures is strongly encouraged to also look at [CH21, Sections 1-8].
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Definition 1.14. A map 𝑓 : 𝐴+ ! 𝐵+ in Fin∗ is called inert if 𝑓 −1 (𝑏) has exactly one element for all

𝑏 ∈ 𝐵. (Though 𝑓 −1 (∞) is allowed to have as many elements as it wants.) Let Fin
int

∗ ⊂ Fin∗ denote

the wide subcategory where the morphisms are inert maps.

Then we have the following equivalent characterisation of commutative monoids.

Lemma 1.15. A functor 𝑀 : Fin∗ ! S satisfied the Segal condition if and only if the restricted functor
𝑀 |Fin

int

∗
is right Kan extended from the full subcategory {1+} ⊂ Fin

int

∗ .

1.4 Higher categorical targets

Chain complexes and cohomological field theories. Let ChQ denote the derived category of Q,

i.e. the ∞-category obtained by inverting quasi-isomorphisms in the 1-category of chain complexes

overQ. Then a ChQ-valued TFT is a symmetric monoidal functor

Z : Bord2 −! ChQ.

We will see later that Z (𝑆1) is in particular anESO

2
-algebra. This functor in particular induces maps

Z𝑔,𝑘 : 𝐵Diff𝜕 (Σ𝑔,𝑘) ⊂ Map
Bord2

(∅,⊔𝑘𝑆
1) −!Map

ChQ
(Q,Z (𝑆1)⊗𝑘)

The mapping spaces Map
ChQ

(Q, 𝐶) in ChQ are Eilenberg-Mac Lane spaces on (the connective part

of) the homology of 𝐶, so we can interpret these maps as cohomology classes:

Z𝑔,𝑘 ∈ 𝐻∗ (𝐵Diff𝜕 (Σ𝑔,𝑘);Z (𝑆1)⊗𝑘).

This is closely related to the notion of cohomological field theory introduced by Witten [Wit91]. In

the mathematical formulation by Kontsevich–Manin [KM94, Definition 2.2] such a cohFT roughly

consists of the cohomology ring of a variety 𝐴 = 𝐻∗ (𝑉 ;Q) and maps

𝐼𝑔,𝑛 : 𝐴⊗𝑛 −! 𝐻∗ (M𝑔,𝑛;Q)

for all 𝑔, 𝑛 with 𝑛+2𝑔 ≥ 3, subject to various conditions. The key difference here is that the Deligne–

Mumford compactification M𝑔,𝑛 appears, rather than the moduli space M𝑔,𝑛 ≃ 𝐵Diff(Σ𝑔,𝑛). This

difference can be made up for by establishing a pushout square of modular ∞-operads

𝐵SO(2) M

∗ M.
⌜

A version of this for (a specific model of) ∞-properads was established by Deshmukh [Des22], and

this ought to be equivalent to a similar pushout of modular ∞-operads in the framework outlined

in these notes. Given such a pushout we can apply the symmetric monoidal envelope Env(−)
discussed in Theorem 3.7 to obtain a pushout square of symmetric monoidal ∞-categories

Free(𝐵SO(2)) Env(M) = Bord2

Free(∗) Env(M).
⌜
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Extra care has to be taken to ensure the stability condition 𝑛 + 2𝑔 ≥ 3. Here Env(M) is a version of

the bordism category Bord2, but where the mapping spaces are built out of the moduli spacesM𝑔,𝑛

instead of M𝑔,𝑛. Then, a cohomological field theory would correspond to a symmetric monoidal

functor

Z : Env(M) −! ChQ

and the above pushout square would allow us to describe such functors are ChQ-valued TFTs

together with a trivialisation of the 𝑆1
-action on Z (𝑆1).

Invertible TFTs and the GMTW-Theorem. A TFT is called invertible if Z (𝑀) ∈ C is invertible

under the tensor product and Z sends all morphisms to equivalences, see e.g. [Sch18]. Invertible

TFTs play an important role in theoretical physics, as they can both be used to describe low-energy

states of gapped systems in condensed matter physics, and they appear as the anomaly of quantum

field theories, see e.g. the introduction of [FH21].

A TFT Z is invertible if and only if it lands in the Picard groupoid of C, which is defined as the

full subgroupoid Pic(C) ⊂ C≃
of the core on the ⊗-invertible objects. Thus to study inertible TFTs

it suffices to study functors from Bord𝑑 to Picard groupoids. There is an adjunction

| − |gp

: Cat
⊗
∞ ⇄ Ω∞ − Spaces

where the right adjoint identifies the category of infinite loop spaces with the full subcategory

of Cat
⊗
∞ on the Picard groupoids. Thus to study 𝑑-dimensional TFTs we only need to know the

infinite loop space |Bord𝑑 |. (This is automatically group-like, so we don’t need to apply the group

completion (−)gp
.) This infinite loop space was described by Galatius–Madsen–Tillmann–Weiss

[Gal+09] using a parametrised Pontryagin–Thom construction as

|Bord𝑑 | ≃ Ω∞−1

MTSO(𝑑).

Thus invertible 𝑑-dimensional TFTs can be described in terms of maps out of the connective

spectrum 𝜏≥0ΣMTSO(𝑑). A more sophisticated version of this approach, allowing for tangential

structures, reflection positivity, and fully extended TFTs, is used to great effect by Freed–Hopkins

[FH21] to make computations in condensed matter physics.

Bordism categories. Another source of 2-dimensional TFTs is by dimensional reduction from

higher dimensional TFTs. Suppose we have a 3-dimensional TFT Z valued in C, then we obtain a

2d TFT as the composite

Bord2

−×𝑆1

−−−! Bord3

Z
−−! C

which is also sometimes called the 𝑆1
-compactification of Z . This can be a physically meaningful

operation, but it can also be a useful tool for studying the TFT Z . (This strategy is for example used

extensively in [Sch18].) Note that this reduction gives us more than just a 2d TFT: since we can act

on 𝑆1
by rotations, we in fact get a 2d TFT with SO(2)-action. More generally, this construction

thus defines for every closed 𝑛-manifold 𝑀 a functor

Fun
⊗ (Bord𝑑 , C) −!Map(𝐵Diff(𝑀), Fun

⊗ (Bord𝑑−𝑛, C)).

Motivated by this, we can ask if there are any other ways of doing a dimensional reduction, which

do not come from crossing with a manifold.
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Question 1.16. Are there any symmetric monodial functors

Bord𝑑−𝑛 −! Bord𝑑

that are not of the form − × 𝑀 for some closed 𝑛 − 𝑑?

Presumably such functors exist, but the author has no clue how one would go about constructing

them. One category level up, one can also ask what the automorphisms of the functor − × 𝑀 are.

Certainly Diff(𝑀) acts on the functor, but there might be more automorphisms that don’t come

from diffeomorphisms. We can also ask this for 𝑛 = 0, in which case the question concerns the

automorphisms of Bord𝑑 . This is an important group as it acts on the space of all 𝑑-dimensional

TFTs, but as far as the author is aware, very little is known about it. As a consequence of the main

theorem of these lectures one can determine this automorphism group in dimension 2:

Corollary 1.17. The identity and orientation reversal automorphism of Bord2 induce an equivalence

C2

≃
−−! Aut

Cat
⊗
∞
(Bord2).

Exercise 1.18. Consider the 1-category ℎ(Bord2) where morphisms are diffeomorphism classes

of bordisms. Show that the orientation reversal automorphism of Bord2 becomes isomorphic to

the identity as a functor ℎ(Bord2) ! ℎ(Bord2). Use the classification from Theorem 1.2 (suitably

adapted to general 1-categorical targets) to show that Aut(ℎ(Bord2)) ≃ ∗.

2 Modular ∞-operads

The goal of this lecture is to introduce modular operads, which encode the gluing operations of

connected surfaces. The idea of modular operads was first conceived by Getzler–Kapranov [GK98]

who introduced what we would call “modular operads enriched in chain complexes”
8

in order

to study the cohomology of the moduli spaces of curves M𝑔,𝑘 and its compaticfication M𝑔,𝑘 . In

particular, for them as for us the key example of a modular operad comes from surfaces. (Note that

we will not discuss enrichment here, but the theory presented easily generalises to the enriched

world thanks to [CH23].) The notion of modular ∞-operad, i.e. modular operads enriched in

“spaces”, was first introduced by Hackney–Robertson–Yau [HRY20] and the approach we present

here is equivalent to theirs. The only difference is that we give an alternative, but equivalent,

definition of the graph category Gr (denoted Uop
in their work). Moreover, we in Section 2.3 sketch

a construction of the manifold modular operad B𝑑 , which seems to be new in this form.
9

The key idea behind modular operads is that they should model the algebraic structure that

the moduli spaces of connected surfaces 𝐵Diff𝜕 (Σ𝑔,𝑘) have under gluing boundary circles. The

elementary operations are the gluing maps

𝐵Diff𝜕 (Σ𝑔
1
,𝑘

1
) × 𝐵Diff𝜕 (Σ𝑔2 ,𝑘2

) ! 𝐵Diff𝜕 (Σ𝑔
1
+𝑔2 ,𝑘1

+𝑘2−2) and 𝐵Diff𝜕 (Σ𝑔,𝑘) ! 𝐵Diff𝜕 (Σ𝑔+1,𝑘−2),
8
Also note that their definition comes with a genus-grading built in and that they require a “stability condition”, which

for example ensures that no disks appear in their modular operad. We’ll encounter genus gradings later, but we’ll not be

imposing a stability condition.

9
Though it of course is modelled on Getzler–Kapranov’s modular operad. Also, Basualdo-Bonatto–Robertson already

have a construction of a modular ∞-operad analogous to B
2
.
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but to keep track of compatibilities between theses operations we will in fact consider more elaborate

gluing maps where we the combinatorics of gluing are prescribed by a graph.

Definition 2.1. Let 𝑀 be a connected compact oriented 𝑑-manifold with boundary. A cut-system

in 𝑀 is a codimension 1 submanifold 𝑆 ⊂ 𝑀 that is two-sided/coorientable and contains the

boundary of 𝑀 . To such cut-system we can assign a dual graph Δ(𝑀, 𝑆) whose vertices are the

path components of 𝑀 \ 𝑆 and whose edges are the components of 𝑆.

[todo: add figure of cut system and dual graph]

2.1 Graphs

We now set up the precise combinatorial framework that we will use for describing the gluing of

surfaces.

Definition 2.2. A graph is a 4-tuple (𝑉, 𝐴, †, 𝑟) where 𝑉 and 𝐴 are finite sets, † : 𝐴 ! 𝐴 is a fixed-

point free involution, and 𝑡 : 𝐴 ! 𝑉+. We refer to 𝑉 as the set of vertices and 𝐴 as the set of arcs or

half-edges. We will require all graphs to be connected in the sense that they cannot be written as a

disjoint union.

Equivalently, a graph is connected if the equivalence relation on 𝐴⊔𝑉 generated by 𝑎 ∼ 𝑎† for 𝑎 ∈ 𝐴

and 𝑎 ∼ 𝑡 (𝑎) for 𝑎 ∈ 𝑡−1 (𝑉) has only one equivalence class.

Definition 2.3. We say that a graph is elementary if it isomorphic to one of the following

• The edge 𝔢 ≔ (∅, {𝑎, 𝑎†}), or

• The 𝑘-corolla 𝔠𝑘 : ({𝑣}, {𝑎1, 𝑎
†
1
, . . . , 𝑎𝑘 , 𝑎

†
𝑘
}) for some 𝑘 ∈ N where 𝑟 (𝑎𝑖) = 𝑣 and 𝑡 (𝑎†

𝑖
) = ∞,

including the isolated vertex 𝔠0 = ({𝑣}, ∅).

Equivalently, a graph (𝑉, 𝐴) is elementary if and only if 𝑉 has at most one element and for every

𝑎 ∈ 𝐴 we have ∞ ∈ {𝑡 (𝑎), 𝑡 (𝑎†)}.

Example 2.4. For all 𝑛 ≥ 0 the linear graph 𝔩𝑛 is defined as

l𝑛 ≔ ({𝑣1, . . . , 𝑣𝑛}, {𝑎0, 𝑎
†
0
, . . . , 𝑎𝑛, 𝑎

†
𝑛)) where 𝑡 (𝑎𝑖) =

{
𝑣𝑖 if 𝑖 > 0,

∞ if 𝑖 = 0,
and 𝑡 (𝑎†

𝑖
) =

{
𝑣𝑖+1 if 𝑖 < 𝑛,

∞ if 𝑖 = 𝑛.

Definition 2.5. To each graph Γ = (𝑉, 𝐴) we assign a topological spaces, called its compactification

defined by

Γ+ ≔ (𝑉 ⊔ 𝐴 × [0, 1]) /((𝑎, 0) ∼ 𝑡 (𝑎) and (𝑎, 𝑠) ∼ (𝑎†, 1 − 𝑠))

This is a finite 1-dimensional pointed CW complex with 0 skeleton 𝑉+ and base point ∞.

Remark 2.6. In fact, there’s a bĳection between isomorphism classes of graphs and isomorphism

classes of finite 1-dimensional pointed CW complexes that have the property that they are connected

after removing the base point.
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Figure 1: A graph (𝑋,𝑉) and its one-point compactification (𝑋+, 𝑉+) with ∞ labeled in red.

Warning 2.7. The description of graphs through their compactification suggests that we might

want to add another graph 𝔰 to our category Gr such that 𝔰+ = 𝑆1 ⊔ {∞}. This would be a graph

with no vertices and a single edge that loops back onto itself; called the nodeless loop. Such a

graph cannot be expressed using the combinatorial framework we have chosen, but it makes sense

topologically, if we define a graph to be anything that “locally looks like 𝔢 or 𝔠𝑘”. (A concrete

definition would characterise Γ+
as those pairs (𝑋,𝑉+,∞) of pointed compact Hausdorff spaces

where 𝑉 is finite and 𝑋 \ 𝑉+
is a 1-manifold.) Adding this nodeless loop will yield a new category

Gr𝔰 that contains Gr (Definition 2.8) as a full subcategory. This new category has better categorical

properties, in particular it is an extendable algebraic pattern in the sense of [CH21, Definition 8.5],

which is useful for computing free modular operads. The downside is that Gr𝔰 is no longer a

1-category, but rather an ∞-category, as for example AutGr𝔰 (𝔰) = O(2). Hackney–Robertson–Yau

introduce such a variant of their graph category 𝑈 [HRY20, Section 4.1], which is a 1-category and

thus will be equivalent to ℎ(Gr𝔰)op
. However, this does not make 𝑈op

into an extendable pattern.

For the purpose of these lectures we’ll simply ignore the nodeless loop and work with the smaller

category Gr.

Graph maps – topological.

Definition 2.8. A graph map 𝑓 : Γ ! Λ is a continuous map 𝑓 : Γ+ ! Λ+
between one-point

compactifications such that

(1) 𝑓 (𝑉+
Γ
) ⊂ 𝑉+

Λ
and 𝑓 (∞) = ∞,

(2) 𝑓 −1 (Λ+ \𝑉+
Λ
) ! Λ+ \𝑉+

Λ
is a homeomorphism, and

(3) 𝑓 −1 (𝑣) is connected for all 𝑣 ∈ 𝑉Λ.

We let Gr denote the category whose objects are connected graphs and morphisms are isotopy

classes of graph maps. (An isotopy of graph maps is a continuous [0, 1]-family of graph maps.)

Remark 2.9. If we drop the third condition we obtain a more general category GR. This GR
seems to be the appropriate generality in which to develop the general theory discussed here, but

its corresponding algebraic structure are “circuit algebras” / “non-connected modular operads”,

which will not turn up in this lecture series. So we will restrict to Gr throughout.

Note that a graph map 𝑓 : Γ ! Λ induces a map of vertices 𝑓vert : 𝑉+
Γ
! 𝑉+

Λ
and a map of arcs (by

taking preimages) 𝐴Γ  𝐴Λ : 𝑓arc. These induce functors

𝑉+
: Gr −! Fin∗ and 𝐴 : Grop −! Fin

BC2 .
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The idea that graph maps are isotopy classes of continuous maps might be a little unsettling at

first, but it turns out that (at least for connected graphs) the data of a graph map is determined

entirely combinatorially.

Lemma 2.10. The combined functor

(𝑉+, 𝐴) : Gr −! Fin∗ × (Fin
BC2 )op

is faithful. In other words, two graph maps are isotopic if and only if they induce the same map on vertices
and on arcs.

Figure 2: Three pictures of the same graph map (𝑋,𝑉) ! (𝑌,𝑊). First unlabeled, second with the

preimages of vertices in blue and the preimages of infinity in red, and third the continuous map

𝑋+ ! 𝑌+
with the preimages of infinity in red.

Graph maps – combinatorial. By Lemma 2.10 graph maps are entirely determined by combina-

torial data. Consequently, it must be possible to define them without ever making reference to the

topological space Γ+
. We’ll discuss this combinatorial definition here and leave it up to the reader

to chooses which of the equivalent definitions they work with.

In order to define graph maps we will need the notion of a path in a graph. Fix a graph Γ = (𝑉, 𝐴)
and two vertices 𝑣𝑎, 𝑣𝑏 ∈ Γ. A path in Γ from 𝑣start to 𝑣

end
is a finite sequence of arcs (𝑎1, . . . , 𝑎𝑛)

such that

𝑣start = 𝑡 (𝑎†
1
), 𝑡 (𝑎1) = 𝑡 (𝑎†

2
), . . . 𝑡 (𝑎𝑛−1) = 𝑡 (𝑎†𝑛), 𝑡 (𝑎𝑛) = 𝑣

end
.

If 𝑣start = 𝑣
end

we allow the empty path. We say that a path is bivalent if each of the vertices 𝑡 (𝑎𝑖) is

bivalent or ∞ for all 1 ≤ 𝑖 < 𝑛.

Definition 2.11. A graph map 𝑓 : (𝑉, 𝐴) ! (𝑊, 𝐵) consists of two maps

𝑓v : 𝑉+ ! 𝑊+ and 𝐴 − 𝐵 : 𝑓a

subject to the following conditions

1. 𝑓v (∞) = ∞,

2. 𝑓a (𝑏†) = 𝑓
h
(𝑏)† for all 𝑏 ∈ 𝐵,

3. 𝑓 −1

a
(𝑎) is a bivalent path from 𝑓v (𝑟 (𝑎)) to 𝑓v (𝑡 (𝑎†)) in 𝐵,
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4. if 𝑓v (𝑣) = 𝑓v (𝑣′) ≠ ∞ for some 𝑣, 𝑣′ ∈ 𝑉 , then there is a path from 𝑣 to 𝑣′ in (𝑉, 𝐴) that uses

only half-edges in 𝐴 \ 𝑓
h
(𝐵).

5. each 𝑤 ∈ 𝑊+ \ 𝑓v (𝑉+) is bivalent and appears in exactly one path as described in 4.

Remark 2.12. The combinatorial definition here relies (just like Lemma 2.10) on the assumption

that the graphs are connected, but this can be generalised by instead encoding 𝑓a as a map in Assoc,

i.e. by remembering total orders on its preimages.

Lemma 2.13. Both the topological and the combinatorial definition yield well defined categories, and these
categories are equivalent to each other and to the category Uop of [HRY20].

[todo: add figures of various graph maps]

2.2 Modular operads

The Segal condition – one-coloured. We would like to define modular ∞-operads as functors

Gr! S satisfying a condition analogous to Eq. (1) in the definition of commutative monoids. For

this we need analogues of the maps 𝜌𝑎 : 𝐴+ ! 1+ that project to individual elements.

For every vertex 𝑣 ∈ Γ let 𝐴𝑣 = 𝑟−1 (𝑣) ⊂ 𝐴(Γ) be the set of half-edges incident at 𝑣. Let 𝔠𝑣 be the

corolla that 𝐴𝑣 × {+,−} as its set of half-edges with (ℎ+)† = ℎ− , 𝑟 (ℎ+) = 𝑣 and 𝑟 (ℎ−) = ∞. Then there

is a canonical graph map

𝜌𝑣 : Γ −! 𝔠𝑣

that sends 𝑣 to the unique vertex of 𝔠𝑣 and every other vertex to ∞, and on half-edges is the map

𝐴𝑣 × {+,−} ! 𝐴 that restricts to the inclusion of 𝐴𝑣 on 𝐴𝑣 × {+}.
Definition 2.14. A functor O : Gr −! S is a one-coloured modular ∞-operad if for every graph Γ

the map

(𝜌𝑣)𝑣∈𝑉 (Γ) : O(Γ) −!
∏

𝑣∈𝑉 (Γ)
O(𝔠𝑣)

is an equivalence.

Example 2.15. Given a commutative monoid 𝑀 : Fin∗ −! S we can define a modular operad as

the composite

𝑉∗
+𝑀 : Gr 𝑉+−−! Fin∗

𝑀
−−! S

where the first functor sends a graph to its set of vertices plus an additional base point.

Example 2.16. The grading modular operad 𝜔 : Gr ! Set ⊂ S is defined by assigning to each

graph Γ its set of possible labelings of vertices by natural numbers

𝜔(Γ) ≔ Map(𝑉Γ,N)

and to a morphisms 𝑓 : Γ! Λ it assigns the map

𝜔( 𝑓 ) : Map(𝑉Γ,N) −!Map(𝑉Λ,N)

𝛼 7−!
©­«𝑣 ∈ 𝑉Λ 7! 𝑏1 ( 𝑓 −1 (𝑣)) +

∑︁
𝑤∈𝑊∩ 𝑓 −1 (𝑣)

𝛼(𝑤)ª®¬
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that sums the weights over the fiber and adds the Betti number of the fiber.

Exercise 2.17. Show that 𝜔 is a well-defined functor and satisfies the Segal condition. Show that

it is not isomorphic to 𝑉∗𝑀 for any commutative monoid 𝑀 . Consider modular suboperads of 𝜔,

i.e. subfunctors 𝐹 ⊆ 𝜔 that also satisfy the Segal condition. Show there are infinitely many. Show

that there are exactly two modular suboperads that contain the labelling 0 ∈ 𝜔(𝔠3)
Example 2.18. For C a symmetric monoidal 1-category, 𝑥 ∈ C a dualisable object, and 𝑒 : 𝑥 ⊗
𝑥 ! 1 a non-degenerate symmetric pairing, we can define a one-coloured modular operad E ,

which generalises the endomorphism operad of 𝑥. Its value on 𝔠𝑘 is E (𝔠𝑘) = MapC (1, 𝑥⊗𝑘). The

functoriality with respect to graph morphisms is defined by using the pairing to cancel pairs of

half-edges that are collapsed and by using the dual co-paring to label newly introduced bivalent

vertices.

The Segal condition – multi-coloured. In a one-coloured modular operad O the value on the

edge O(𝔢) is always trivial. In general we might more flexibility than this: for example, when

considering the modular operad B𝑑 that corresponds to Bord𝑑 , the space of colours B𝑑 (𝔢) should

be the space of connected closed (𝑑 − 1)-manifolds. Instead, there should be a space of colours

and the product in the Segal condition should be replaced by a fiber product over this space. In

addition to the maps 𝜌𝑣 : Γ! 𝔠𝑣 for each vertex, we will also need maps

𝜌ℎ : Γ! 𝔢

for every half-edge ℎ ∈ 𝐴(Γ). This map (necessarily) sends all vertices to ∞ and on half-edges it is

given by the inclusion {ℎ, ℎ†} ⊂ 𝐴(Γ).
Definition 2.19. A map of graphs 𝑓 : Γ+ ! Λ+

is called inert if for all 𝑤 ∈ 𝑉Λ the preimage

𝑓 −1 (𝑣) ⊂ Γ+
is a single point and this point is a vertex. We let Grint ⊂ Gr denote the wide

subcategory where morphisms are inert maps. We let Grel ⊂ Grint

denote the full subcategory on

the elementary graphs 𝔢 and {𝔠𝑘}𝑘≥0.

Definition 2.20. A modular operad is a functor O : Gr! S such that the restriction

O |Grint : Grint −! S

is right Kan extended from the full subcategory Grel ⊂ Grint

.

This definition an instance of the concept of Segal spaces over algebraic patterns. The theory of

algebraic patterns, developed by Chu and Haugseng [CH21], is extremely useful and you should

check it out!

We can also spell out the condition more concretely.

Lemma 2.21. A functor O : Gr! S is a modular operad if for every graph Γ the square

𝑋 (Γ)
∏

𝑣∈𝑉 (Γ)
𝑋 (𝔠𝑣)

∏
𝜎∈𝐸 (Γ)

𝑋 (𝔢𝜎)
∏

ℎ∈𝐴(Γ)
𝑋 (𝔢ℎ)

⌟
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is cartesian, i.e. it is a pullback square.

Corollary 2.22. A functor O : Gr ! S is a one-coloured modular operad if and only if it is a modular
operad and O(𝔢) is contractible.

Remark 2.23. If we think about graphs topologically, then we can describe the Segal condition

as a sheaf condition with respect to covers by open subgraphs. Suppose for simplicity that we

allow disconnected graphs in Gr. Fix a graph Γ and a decomposition (Γ+) \ ∞ = 𝑈1 ∪𝑈2 such that

each 𝑈𝑖 is open and has finitely many components. Then there are graphs Λ𝑖 with Λ+
𝑖
� 𝑈+

𝑖
and

Λ+
01
� (𝑈0 ∩𝑈1)+ and the collapse maps Γ+ ! 𝑈+

𝑖
induce inert maps Γ ↣ Λ𝑖 as well as Λ𝑖 ↣ Λ01.

Then the Segal condition can be expressed as saying

O(Γ) = O(Λ0) ×O (Λ
01
) O(Λ1).

The pullback square in Lemma 2.21 is in fact an instance of this for the canonical open cover where

𝑈0 = Γ+ \ 𝑉+
and 𝑈1 is an disjoint union of small open neighbourhoods of the vertices. (Here we

also need to use that if O is defined on disconnected graphs, then the Segal condition in particular

tells us that O(Γ ⊔ Γ′) = O(Γ) ×O(Γ′).)
Said yet another way, we can interpret (Grint)op

as a category of open topological graphs and open

embeddings, with the comparison to the topological definition of Gr given by taking each open

embedding 𝑖 : 𝑋 ↩! 𝑌 to its collapse map 𝑖! : 𝑌+ −! 𝑋+
. Then the Segal condition says exactly that

O |Grint is a sheaf with respect to such open embeddings.

Example 2.24. The orientation modular operad is the functor

or : Gr 𝐴
−−! (Fin

BC2 )op
Map

C
2 (−,C2 )

−−−−−−−−! Set ⊂ S ,

which sends a graph Γ to the set Map
C2 (𝐴Γ,C2) of orientations of the arcs of Γ. One checks that

this indeed satisfies the condition of Definition 2.20 as it is in fact right Kan extended from the full

subcategory BC2 = {𝔢} ⊂ Gr. This modular operad has two colours or(𝔢) = {!, } corresponding

to the two orientations of the edge 𝔢. It has exactly one 𝑘-ary operation for choice of input colours,

so O(𝔠𝑘) has 2
𝑘

elements.

Example 2.25. We can extend the example from Example 2.18 to a multicoloured modular operad

U as follows. (See also [GK98, (2.25)].) The colours of U will be pairs of a vector space 𝑉 and a

non-degenerate symmetric bilinear form on𝑉 . For a graph Γ, let U (Γ) be the set of labellings (𝑉, 𝛼)
where for each edge 𝑒 ∈ 𝐸Γ, 𝑉𝑒 is a vector space with a non-degenerate symmetric bilinear form,

and for each vertex 𝑣 ∈ 𝑉Γ, 𝛼𝑣 ∈
⊗

𝑎∈𝑡−1 (𝑣) 𝑉𝑎 is a vector in the tensor product of the vector spaces

assigned to the adjacent edges.

This can be made into a functor Gr ! Set, where inert maps forget data, edge contractions are

implemented by using the inner product to contract 𝛼𝑣 ⊗ 𝛼𝑤 , and subdivisions are implemented

using the copairing

∑
𝑖 𝑏𝑖 ⊗ 𝑏#

𝑖
∈ 𝑉 ⊗ 𝑉 induced by the inner product.

[todo: add figures of labeling by vector spaces]
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A factorisation system. To explain why Definition 2.20 is indeed an instance of Segal spaces over

an algebraic pattern [CH21], we briefly describe a factorisation system on Gr. In doing so, we’ll

give another description of inert maps, this time in terms of the combinatorial definition of graph

maps.

Definition 2.26. A graph map 𝑓 : Γ! Λ is called

(1) inert if 𝑓 −1

v
(𝑣) has exactly one element for all 𝑣 ∈ 𝑉 (Λ) and 𝑓 −1

a
(𝑎) is only empty when

𝑓v (𝑟 (𝑎)) = ∞, or

(2) active if 𝑓 −1

v
(∞) = {∞} and the path 𝑓 −1

a
(𝑎) never passes through ∞.

We denote inert morphism by ↣ and active morphisms by ⇝.

Lemma 2.27. Every morphism 𝑓 : Γ! Λ admits a factorisation

Γ ↣ Σ ⇝ Λ

and the category of such factorisations of 𝑓 is a contractible groupoid.

2.3 The manifold modular operad

We now define a modular ∞-operad B𝑑 that is analogous to the bordism category Bord𝑑 . This

analogy will be made precise in Theorem 3.7 where we will see that one can obtain Bord𝑑 from B𝑑

(and vice-versa).

In principle, we would like to define B𝑑 as follows. For a graph Γ, a 𝑑-manifold fibered over Γ is a

smooth manifold 𝑊 with 𝜕𝑊 = ∅ and a continuous map 𝜋 : 𝑊 ! 𝑋 such that

1. 𝜋 is proper (ie. preimages of compacts are compact),

2. the fiber 𝜋−1 (𝑥) is connected for all 𝑥 ∈ 𝑋 ,

3. 𝜋−1 (𝑋 \𝑉) ! 𝑋 \𝑉 is smooth and a submersion, and

4. 𝜋−1 (𝑉) ⊂ 𝑊 is a codimension 0 submanifold with boundary.

However, its quite difficult and tedious to make this well-defined and functorial.

Non-unital modular operads. Instead of defining an entire modular operad, we will only define

it’s non-unital part, i.e. we won’t be specifying the unit map 𝔢 ⇝ 𝔠2 and all its associated coherence.

Definition 2.28. A graph map 𝑓 : Γ! Λ is a quasi-collapse if 𝑓v : 𝑉 (Γ) ! 𝑉 (Λ) is surjective. We let

Grqc ⊂ Gr denote the subcategory that contains all objects but only the quasi collapse morphisms.

This category still contains all the inert morphisms, so we can make sense of the Segal condition.

Definition 2.29. A non-unital modular operad is a functor O : Grqc −! S that satisfies the Segal

condition.
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Theorem 2.30 ([*modular]). Restriction along the inclusion 𝑖 : Grqc ! Gr induces a functor

𝑖∗ : ModOp −! nuModOp.

This functor is replete, i.e. it induces a monomorphism on mapping spaces and it is fully faithful on maximal
subgroupoids.

Thus to construct a modular operad it suffices to construct a non-unital modular operad and show

that it is in the essential image of 𝑖∗; for those non-unital modular operads the theorem guarantees

that there is a unique extension to a modular operad. There is a concrete description of the essential

image of 𝑖∗ in terms of “quasi-unital modular operads”, which makes this strategy feasible, but we

won’t go into the details here.

The non-unital manifold modular operad. To define B𝑑 as a non-unital modular operad we need

some preliminary constructions. Recall that a cut-system in a compact oriented 𝑑-manifold 𝑀 is a

codimension 1 submanifold 𝑆 ⊂ 𝑀 that is coorientable and contains the boundary of 𝑀 . We can

now precisely define its dual graph.

Definition 2.31. The dual graph Δ(𝑀, 𝑆) of a cut system is defined as follows: its vertices are the

path components of 𝑀 \ 𝑆 and its half-edges are pairs of a component of 𝑆 and a coorientation on

it. (A coorientation of 𝑆0 ⊂ 𝑆 can be described as an equivalence class of nowhere-zero normal

vector fields up to positive rescaling.) The involution † reverses the coorientation and the root map

𝑟 : 𝐴! 𝑉 sends a component 𝑆0 ⊂ 𝑆 to the component of 𝑀 \ 𝑆 into which the coorienation points,

assigning ∞ if 𝑆0 ⊂ 𝜕𝑀 and the coorientation points out of 𝑀 .

Now to construct B𝑑 : Grqc ! S we define for each graph Γ ∈ Grqc

, a topologically enriched

groupoid 𝐵𝑑 (Γ). This groupoid has as objects triples (𝑀, 𝑆, 𝛼) of a connected compact oriented

𝑑-manifold 𝑀 with a cut-system 𝑆 ⊂ 𝑀 and an isomorphism of graphs 𝛼 : Δ(𝑀, 𝑆) � Γ. The space

of morphisms (𝑀, 𝑆, 𝛼) ! (𝑁, 𝑅, 𝛽) is the space of those diffeomorphisms 𝜑 : 𝑀 ! 𝑁 that satisfy

𝜑(𝑆) = 𝑅 and for which the induced isomorphism of dual graphs satisfies 𝛽 ◦ Δ(𝜑) = 𝛼. When the

graph Γ is the edge 𝔢 we simply set 𝐵𝑑 (𝔢) to be the groupoid of closed oriented (𝑑 − 1)-manifolds.

Every graph map 𝑓 : Γ! Λ induces a functor

𝐵𝑑 ( 𝑓 ) : 𝐵𝑑 (Γ) −! 𝐵𝑑 (Λ)
(𝑀, 𝑆, 𝛼) 7−! (𝑁, 𝑆′, 𝛼′)

where 𝑁 is obtained from 𝑀 by deleting all components of 𝑀 \ 𝑆 that correspond to vertices being

deleted by 𝑓 , cutting along all components of 𝑆 that correspond to edges being cut by 𝑓 . The cut

system 𝑅 is obtained from 𝑆 by removing all components that correspond to edges that are being

collapsed by 𝑓 . We then obtain our modular operad by taking the realisation of this groupoid

B𝑑 : Grqc
𝐵𝑑−−! TopGpd

|− |
−−! S .

This is quasi-unital and thus by Theorem 2.30 uniquely extends to a modular operad.

In dimension 𝑑 = 2 we get that

B2 (𝔢) = 𝐵SO(2) and B2 (𝔠𝑘) =
⊔
𝑔≥0

𝐵Diff(Σ𝑔,𝑘).
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Example 2.32. We can also define a variant B𝜕
𝑑

of B𝑑 where the 𝑑-manifolds are allowed to have

boundary. For 𝑑 = 3 this has an interesting sub modular operad H ⊂ B𝜕
3
, the handlebody modular

operad. Its colours are 2-disks and its operations are handlebodies with marked disks in their

boundary:

H(𝔢) = 𝐵Diff(𝐷2) ≃ 𝐵SO(2) and H(𝔠𝑘) =
⊔
𝑔≥0

𝐵Diff⊔𝑘𝐷
2 ((𝑆1 × 𝐷3)♮𝑔)

There is a map of modular operads

𝜕 : H −! B2

and it follows from the Smale conjecture (Diff(𝐷3) ≃ SO(3) ≃ Diff(𝑆2), as proven by Hatcher (and

Smale)) that this map induces an equivalence in genus 0.

3 Envelopes and duality

3.1 Variants of modular ∞-operads

There are various notions closely related to modular operads, whose definition is entirely analogous

to modular operads, except that the category of graphs is replaced by another category.

Properads. One of the most important variants for us will be properads, which are built on

directed acyclic graphs.

Definition 3.1. The category of directed graphs dGr is defined as the pullback

dGr Gr

Fin
op (Fin

BC2 )op.

𝐸

⌟
𝐴

−×C2

In other words, a directed graph is a graph Γ together with an splitting of 𝐴Γ as 𝐸Γ × C2. The

category of directed acyclic graphs is the full subcategory daGr ⊂ Gr on those directed graphs that

do not have directed cycles.

We can also make sense of the Segal condition for functors daGr ! S , as we shall make precise

shortly (Definition 3.4). The elementary objects here are the directed edge 𝔢 and the directed

corollas 𝔠𝑘,𝑙 for all 𝑘, 𝑙 ≥ 0. (To obtain 𝔠𝑘,𝑙 the edges of 𝔠𝑘+𝑙 are oriented in such a way that the vertex

has 𝑘 incoming and 𝑙 outgoing edges.) Such functors are called properads and we let

Prpd ⊂ Fun(daGr, S)

denote the category of properads.

Example 3.2. Restriction along the forgetful functor 𝜑 : daGr ! Gr preserves the Segal condition

and thus defines a functor

𝜑∗
: ModOp −! Prpd.
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For a modular operad O the resulting properad 𝜑∗O has the same space of colours (though it has

forgotten about the C2-action on this space) and its space of operations as

(𝜑∗O) (𝔠𝑘,𝑙) = O(𝜑(𝔠𝑘,𝑙)) = O(𝔠𝑘+𝑙).

We will often abuse notation and simply denote 𝜑∗O by O.

Example 3.3. For every symmetric monoidal ∞-category C we will in Theorem 3.7 encounter a

properad U (C). While constructing this coherently is quite a bit of work (and essentially the main

theorem of [BS22]) we can already describe it conceptually. The value of U (C) (Γ) at a graph Γ is

the space of all labellings of Γ by C in the following sense. A labelling assigns to each edge 𝑒 ∈ 𝐸Γ

of Γ an object 𝑥𝑒 ∈ C and to each vertex 𝑣 ∈ 𝑉Γ a morphism

𝛼𝑣 :

⊗
𝑒∈𝐸Γ (𝑣) in

𝑥𝑒 −!
⊗

𝑒∈𝐸Γ (𝑣)out

𝑥𝑒

whose source is the tensor product of labels edges entering 𝑣 and whose target is the tensor product

of labels of edges exiting 𝑣. The functoriality of this with respect to inert maps 𝑓 Γ ↣ Λ is given

by forgetting the part of the labelling associated to 𝑓 −1 (∞), the functoriality with respect to edge

contractions is by composing morphisms, and the functoriality with respect to subdivisions is by

introducing identity morphisms.

[todo: add figures of labelled graph]

Graph patterns. Properads are only one of many variants of the definition of modular operads

one might want to consider. All of these variants are defined by first specifying a variant of the

graph category and then considering functors to S that satisfy an analogue of the Segal condition.

To have a framework for these examples, we introduce the following definition.

Definition 3.4. A graph pattern is a∞-category G with a functor 𝜋 : G! Gr that admits cocartesian

lifts for inerts. We let Gint ⊂ G denote the wide subcategory where morphisms are cocartesian

lifts of inerts and let Gel ⊂ Gint
denote the full subcategory on all objects that map to 𝔢 or 𝔠𝑘 in Gr.

Then we define the category of G-Segal spaces as the full subcategory

Seg(G) ≔ Seg(G;S) ⊂ Fun(G, S)

on those functors 𝐹 : G! S such that 𝐹|Gint is right Kan extended from Gel
.

Example 3.5. We list several “combinatorial” examples of graph patterns in Table 1. Another

type of example can be obtained as follows. Suppose that V ∈ Cat
⊗
∞ is a symmetric monoidal

∞-category, i.e. a functor V : Fin∗ ! Cat∞ satisfying the Segal condition and let V⊗ ! Fin∗ denote

its unstraightening. (This is how symmetric monoidal ∞-categories are encoded in [Lur].) Then

we can define a graph pattern GrV ≔ Gr ×Fin∗ V⊗
. This is a category where objects are graphs

whose vertices are decorated by objects of V . The resulting notion of Segal spaces give a definition

of modular operads enriched in PSh(Vop) where we equip the ∞-category of presheaves with the Day

convolution symmetric monoidal structure. By adding the assumption that certain presheaves

are representable we can thus define the notion of a modular operad enriched in V . This is an

instance of the approach to enrichment outlined in [CH23] and the reader interested in enrichment

is strongly encouraged to read about it in [CH23].
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Graph pattern allowed graphs (complete) Segal objects

Gr all (connected) graphs modular operads

Tree all contractible graphs cyclic operads

linGr ≃ 𝚫op//C2 all graphs such that Γ+ � 𝑆1
,
10 ∞-categories with involution

dGr = Un(or) (con.) directed graphs wheeled properads

daGr directed acyclic graphs properads

dTree directed trees dioperads

dTree1−out ≃ Ωop
rooted trees

11
operads

dlinGr ≃ 𝚫op
directed linear graphs

12 ∞-categories

gGr = Un(gr) genus graded graphs graded modular operads

gGr≤𝑔 genus-restricted graphs genus-restricted mod. op.

Table 1: Some graph patterns and the name for the resulting notion of Segal spaces. See [Hac21,

Section 6] for a more detailed overview, though note that Hackney works with the opposites of the

categories considered here. See Definition 5.1 for graded graphs.

Remark 3.6. The functor 𝜋 : dGr! Gr is a left fibration and in fact it is exactly the unstraightening

of the orientation modular operad or : Gr ! S from Example 2.24. It thus follows from [HK21,

Proposition 3.2.5] that left Kan extension along 𝜋 induces an equivalence

𝜋 : Seg(dGr) ≃ Seg(Gr)/or
= ModOp/or

.

In other words, a wheeled properad is the same as a modular operad with a map to the orientation

modular operad. See also [Hac21, Theorem 6.23 and Remark 6.25].

3.2 The monoidal envelope

In this section we will import the main result of [BS22] as a black-box. It concerns an adjunction

that allows us to build the free symmetric monoidal∞-category on a∞-properad. The right adjoint

will give use an ∞-category version of the construction from Example 2.25 and Example 3.3.

Theorem 3.7 ([BS22]). There is an adjunction

Env: Prpd ⇄ Cat
⊗
∞ :U

that has the various useful properties discussed below.

To describe the objects and morphisms of Env(O) we will need the free commutative monoid

F(𝑋) =
⊔

𝑛≥0
𝑋×𝑛
ℎΣ𝑛

. (One can show that this is indeed the forget-free monad of the adjunction

CMon(S) ⇄ S .) The objects of Env(O) are freely generated by the colours of O whereas the

morphisms of Env(O) are freely generated by the operations of O, i.e.

Env(O)≃ = F(O(𝔢)) and Ar(Env(O))≃ = F

( ⊔
𝑘,𝑙≥0

𝔠𝑘,𝑙

)
.

Example 3.8. As ∞-operads are just ∞-properads where every operation has exactly one output we

can also take monoidal envelopes of ∞-operads and this recovers the concept of a “free PROP on an
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operad” and the monoidal envelope of [Lur, §2.2.4]. For example, the envelope of the terminal ∞-

operad E∞ is the symmetric monoidal category of finite sets under disjoint union Env(E∞) = Fin.

More generally, if E𝑛 denotes the little 𝑛-disk operad, then its envelope is Env(E𝑛) = Disk
fr

𝑛 ,

the symmetric monoidal ∞-category of disjoint unions of framed 𝑛-disks and framing-preserving

embeddings between them.

The envelope of the terminal properad O = ∗ is the ∞-category of cospans of finite sets

Env(∗) !

= Csp

where objects are finite sets and a morphisms 𝐴 ! 𝐵 is a cospan 𝐴 ! 𝑋  𝐵. The general case

of Env(O) can be thought of as a labelled version of Csp: objects are finite sets labelled by the

colours of O and morphisms are cospans of finite sets labelled by operations of O. For example,

we recover the surface category as the envelope

Env(B2)
!

= Bord2

and more generally the envelope ofB𝑑 is Bord𝑑 and the envelope of the handlebody modular operad

H from Example 2.32 is the handlebody bordism category, which is a subcategory Hbdy ⊂ Bord
𝜕
3

whose objects are disjoint unions of 2-disks and whose morphisms are handlebodies.

Remark 3.9. By slicing over Env(∗) = Csp the adjunction also gives an alternative description

of ∞-properads. Let Prpd
cpl ⊂ Prpd denote the full subcategory of complete ∞-properads (see

Definition 3.12). Then the envelope induces a fully faithful functor

(Env(−) ! Env(∗)) : Prpd
cpl

↩! Cat
⊗
∞/Csp

whose essential image consists of those symmetric monoidal functors 𝜋 : P ! Csp that are

“equifibered” in the sense that the square

P × P P

Csp × Csp Csp

⊗

𝜋×𝜋
⌟

𝜋

⊔

is cartesian. The functor 𝜋 : P ! Csp factors through the subcategory Fin ⊂ Csp of “forward

maps” if and only if P is an operad, i.e. if and only if every operation in P has exactly one output.

In this case Theorem 3.7 recovers the main result of [HK21], see also [BHS22].

Using computations of free ∞-properads one can determine the colours and operations of U (C) for

any C ∈ Cat
⊗
∞. It turns out to be an ∞-categorical version of the multi-colour modular operad from

Example 2.25. Its colours are the objects of C and its operations are maps between tensor products

in C:

U (C) (𝔢) = C≃
and U (C) (𝔠𝑘,𝑙) = colim

𝑥
1
,...,𝑥𝑘

𝑦
1
,...,𝑦𝑙 ∈C≃

MapC (𝑥1 ⊗ · · · ⊗ 𝑥𝑘 , 𝑦1 ⊗ · · · ⊗ 𝑦𝑙)

The value of U (C) on a graph Γ is thus the space of labellings of edges by objects of C and vertices

by morphisms such that the source of the morphisms is the tensor product of the incoming edge

labellings and the target is the tensor product of the outgoing edge labellings. ThusU (C) coherently

implements the sketched description from Example 3.3.
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Algebras over ∞-properads. Using the envelope adjunction we can define algebras over a ∞-

properad in a symmetric monoidal ∞-category.

Definition 3.10. Let C ∈ Cat
⊗
∞ be a symmetric monoidal ∞-category and P ∈ Prpd an ∞-properad.

Then we define the space of P-algebras in C as the space of properad maps P ! U (C)

Alg
prpd

P (C) ≔ Map
Prpd

(P ,U (C)).

Because Env ⊣ U we can equivalently describe algebras as symmetric monoidal functors out of the

envelope:

Alg
prpd

P (C) = Map
Prpd

(P ,U (C)) ≃ Map
Cat

⊗
∞
(Env(P), C).

In fact, this description might be preferable, as it defines an ∞-category of algebras over P (where

morphisms are symmetric monoidal natural transformations) rather than just an ∞-groupoid. If

P is an ∞-properad where every operation has exactly one output (i.e. it is an ∞-operad) then this

recovers the usual definition of algebras over an ∞-operad as for example defined in [Lur].

As we have that Env(B𝑑) = Bord𝑑 we get that C-valued TFTs are algebras over the properad B𝑑 :

Fun
⊗ (Bord𝑑 , C) ≃ Alg

prpd

B𝑑
(C)

(One can show that the left side is always a groupoid.)

3.3 Completeness

We briefly need to discuss the (slightly annoying) subject of “completeness” for modular operads.

(This was mostly skipped in the lecture.) Let us first consider the case of 𝚫op
-Segal spaces. The

Rezk nerve is the functor

N: Cat∞ −! Fun(𝚫op, S)
C 7−! ( [𝑛] 7!Map

Cat∞
( [𝑛], C))

that turns a ∞-category C into the simplicial space N•C which remembers the spaces of functors

[𝑛] ! C for all [𝑛] = {0 ≤ · · · ≤ 𝑛} ∈ 𝚫op
. For example, N0C = C≃

is the space of objects of C and

N1C = (Ar(C))≃ is the space of morphisms of C. It’s a theorem of Joyal–Tierney that this functor is

fully faithful and its essential image are those simplicial spaces that are “complete Segal spaces”,

i.e. that

N: Cat∞
≃
−−! CSeg(𝚫op) ⊂ Fun(𝚫op, S).

Here a simplicial space 𝑋• is called Segal if the canonical maps

(𝜌1, . . . , 𝜌𝑛) : 𝑋𝑛 −! 𝑋1 ×𝑋0
· · · ×𝑋0

𝑋1

are equivalence for all 𝑛. (To make sense of this just think of 𝚫op
as a subcategory of Gr whose

morphisms are the linear graphs [𝑛]=̂𝔩𝑛, though note that this is not a full subcategory.)

To define completeness, let 𝑋
eq

1
⊂ 𝑋1 denote the subspace of those 1-simplices that are “equiva-

lences” in the sense that they admit both-sided inverses under the composition defined via the

Segal condition. The degeneracy map 𝑠0 always factors as

𝑠0 : 𝑋0 −! 𝑋
eq

1
⊆ 𝑋1

and 𝑋• is called complete if the map 𝑋0 ! 𝑋
eq

1
is an equivalence.
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Exercise 3.11. Convince yourself that N•C is always a complete Segal space.

Definition 3.12. A modular ∞-operad O : Gr! S is called complete if the restriction

𝚫op
[𝑛] 7!𝔩𝑛−−−−! Gr O

−−! S

is complete. (It is always a Segal space.) We make the same definition for properads, cyclic operads,

etc.

Let us denote by ModOp
cpl ⊂ ModOp denote the full subcategory of complete modular operads.

It then follows by abstract nonsense that there is a localisation adjunction

𝐿 : ModOp ⇄ ModOp
cpl

: include

where 𝐿 is the completion functor. The non-formal part is the following.

Theorem 3.13 ([*modular]). A morphism 𝑓 : O ! P is inverted by 𝐿 if and only if it is a Dwyer–Kan
equivalence, i.e. it satisfies the following two properties:

1. fully faithful: for all 𝑘 ≥ 0 the square

O(𝔠𝑘) P (𝔠𝑘)

O(𝔢)×𝑘 P (𝔢)×𝑘

𝑓

𝑓

is cartesian.

2. essentially surjective: for every colour 𝑥 ∈ P (𝔢) there exists a colour 𝑦 ∈ O such that 𝑓 (𝑦) is
“isomorphic” to 𝑥 in the sense that there are invertible 2-ary operations relating them.

3.4 Rigid properads

Multi-mapping spaces and composition. For a properad P and colours 𝑥1, . . . , 𝑥𝑘 , 𝑦1, . . . , 𝑦𝑙 ∈
P (𝔢) we define the multi-mapping-space as the pullback

P (𝑥1, . . . , 𝑥𝑘 ; 𝑦1, . . . , 𝑦𝑙) P (𝔠𝑘,𝑙)

{((𝑥1, . . . , 𝑥𝑘), (𝑦1, . . . , 𝑦𝑙))} P (𝔢)×𝑘 × P (𝔢)×𝑙

⌟

Note that with this notation a map of properads is fully faithful in the sense of Theorem 3.13 if and

only if it induces equivalences on all multi-mapping-spaces.

For every properad P and every two-vertex graph Γ ∈ daGr that is built from two corollas 𝔠𝑘,𝑙+𝑟
and 𝔠𝑟+𝑘′ ,𝑙′ by gluing 𝑟 of their edges, the Segal condition allows us to define a composition map as

a zig-zag

P (𝔠𝑘,𝑙+𝑟 ) ×P (𝔢)×𝑟 P (𝔠𝑟+𝑘′ ,𝑙′ )
≃

 −−− P (Γ) −! P (𝔠𝑘+𝑘′ ,𝑙+𝑙′ ).
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On multi-mapping spaces this induces maps

◦𝑤
1
,...,𝑤𝑟

: P (𝑤1, . . . , 𝑤𝑟 , 𝑥
′
1
, . . . , 𝑥′𝑘′ ; 𝑦

′
1
, . . . , 𝑦′𝑙′ ) × P (𝑥1, . . . , 𝑥𝑘 ; 𝑦1, . . . , 𝑦𝑙 , 𝑤1, . . . , 𝑤𝑟 )

−! P (𝑥1, . . . , 𝑥𝑘 , 𝑥
′
1
, . . . , 𝑥′𝑘′ ; 𝑦1, . . . , 𝑦𝑙 , 𝑦

′
1
, . . . , 𝑦′𝑙′ )

which are subject to certain associativity constraints. This combinatorial nightmare is neatly

encoded in the category daGr of directed acyclic graphs. See [HRY15] for a more careful description

of this structure and for the proof that it is faithfully encoded in Fun(daGr, Set).

[todo: add figure of two vertex graph and composition]

Example 3.14. For the underlying properad U (C) of a symmetric monoidal ∞-category C ∈ Cat
⊗
∞

we get

U (C) (𝑥1, . . . , 𝑥𝑘 ; 𝑦1, . . . , 𝑦𝑙) = MapC (𝑥1 ⊗ · · · ⊗ 𝑥𝑘 , 𝑦1 ⊗ · · · ⊗ 𝑦𝑙).
Here the composition morphisms are literally given by composing, at least after we suitably tensor

with identity morphisms:

𝛽 ◦𝑤
1
,...,𝑤𝑟

𝛼 = (id𝑦
1
⊗···⊗𝑦𝑙 ⊗ 𝛽) ◦ (𝛼 ⊗ id𝑥′

1
⊗···⊗𝑥′

𝑘′
).

Duality in properads. Using this notation we can translate the notion of a dualisable object in a

(symmetric) monoidal category to the setting of properads.

Definition 3.15. Two colours 𝑥, 𝑦 ∈ P (𝔢) are called dual if there exist operations 𝑒 ∈ P (𝑦, 𝑥; ∅) and

𝑐 ∈ P (∅; 𝑥, 𝑦) such that the two composites

𝑒 ◦𝑥 𝑐 ≃ id𝑦 ∈ P (𝑦; 𝑦) and 𝑒 ◦𝑦 𝑐 ≃ id𝑥 ∈ P (𝑥; 𝑥)

are homotopic to the respective identity operations. In this case we say that 𝑒 is a duality pairing

and 𝑐 a duality copairing between 𝑥 and 𝑦. A properad P is called rigid if all its colours are

dualisable and we let

Prpd
rig ⊂ Prpd

denote the full subcategory on the rigid properads.

Example 3.16. Two colours of the underlying modular operad U (C) are dual if and only if they are

dual (in the usual sense for monoidal categories) as objects of the symmetric monoidal category C.

Example 3.17. If O is a modular operad, then we can obtain a properad 𝜑∗O by restricting along

𝜑 : daGr ! Gr. This properad is always rigid: the automorphism of 𝔢 ∈ Gr induces a map

(−)∨ : O(𝔢) ! O(𝔢) and the identity operation id𝑥 ∈ O(𝔠2) induces both 𝑒 ∈ (𝜑∗O) (𝑥∨, 𝑥; ∅) and

𝑐 ∈ (𝜑∗O) (∅; 𝑥, 𝑥∨), which compose to the identity.

Rigid properads are modular operads. If a properad is rigid, the duals and duality (co)pairings

turn out to be unique in a suitable sense. Thus duality induces an involution (−)∨ : P (𝔢) ! P (𝔢)
on the space of colours and we can use the (co)pairings to turn outputs into inputs and vice versa:

P (𝑥1, . . . , 𝑥𝑘 ; 𝑦, 𝑧1, . . . , 𝑧𝑙) ≃ P (𝑥1, . . . , 𝑥𝑘 , 𝑦
∨

; 𝑧1, . . . , 𝑧𝑙)

Thus we only really need to remember operations without outputs and a way of gluing them, in

other words, this data should be equivalent to that of a modular operad. This is precisely the

content of the following theorem.
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Theorem 3.18 ([*modular]). The forgetful functor 𝜑 : daGr! Gr induces an equivalence

ModOp
cpl ≃
−−! Prpd

cpl,rig ⊂ Prpd

between the ∞-category of complete modular operads and the ∞-category of complete and rigid properads.

Proof idea. On the most basic level, what we need to do is to show that given a complete rigid

properad P , we can construct a functor Q : Gr ! S with 𝜑∗Q ≃ P . The actual theorem is just

a slightly more precise version of this statement. To define Q on a graph Γ ∈ Gr we proceed as

follows. Pick Γ ↩! Γ′
a subdivision of Γ that admits an acyclic orientation, and pick such an acyclic

orientation 𝔬. (Γ itself might not be in the essential image of daGr ! Gr as it might have loops,

i.e. edges whose source and target agree.) Given such a directed acyclic subdivision, we could try

to set Q(Γ) ≔ P (Γ′, 𝔬), but this does not have a chance of yielding a well-defined functor on Gr as

even the homotopy type of Q′ (Γ) depends on the way we chose to subdivide Γ ↩! Γ′
. However,

we can define a subspace

Q(Γ) ⊂ P (Γ′, 𝔬)

where we only allow those labelling of Γ′
by P , which “label each new vertex invertibly”. More

precisely, this means that we take only those 𝑥 ∈ P (Γ′, 𝔬) such that for every bivalent vertex

𝛼 : Γ′ ↣ 𝔠2, which did not exist in Γ, the resulting element 𝛼∗ (𝑥) ∈ P (𝔠2, 𝔬 |... is an invertible

morphism, if its in P (𝔠1,1), a duality pairing, if it’s in P (𝔠2,0), and a duality copairing if its in

P (𝔠0,2). Using completeness and rigidity one can then show that any two choices of directed

acyclic subdivision of Γ yield equivalent results for Q(Γ). Moreover, one can show that the

category of directed acyclic subdivisions of Γ is weakly contractible and that thus we have only

made a contractible choice in picking one. Making all of the above precise essentially yields a proof

of the theorem. □

The modular operad of dualisable objects. The simplest way of obtaining rigid properads is to

just discard all the colours that are not dualisable. We let Pdual ⊂ P denote the full subproperad

on the dualisable colours. This defines a right adjoint

Prpd
rig

Prpd : (−)dual

(This full inclusion also has a left adjoint for formal reasons, but this left adjoint freely adds duals

and is generally not as easy to compute.) In particular, when C is a symmetric monoidal∞-category,

then (U (C))dual ⊂ U (C) is a complete and rigid properad. By Theorem 3.18 it thus acquires the

structure of a modular operad. Concatenating adjunctions we get a right adjoint

Env: ModOp
cpl ≃ Prpd

cpl,rig ⇄ Prpd
cpl ⇄ Cat

⊗
∞ :Udual

Example 3.19. The value of Udual (C) on a graph Γ is the space of “labellings of Γ by dualisable

objects in C”. Such a labelling consists of a C2-equivariant map 𝑥 : 𝐴Γ ! C≃
and a choice of

𝛼𝑣 ∈ Map(
⊗

𝑎∈𝑠−1 (𝑣) 𝑥𝑎,1) for all 𝑣 ∈ 𝑉Γ. This means that to each edge {𝑎, 𝑎†} we assign a pair of an

object 𝑥𝑎 and its dual 𝑥𝑎† = 𝑥∨𝑎 and to each vertex a morphism 𝛼𝑣 : 𝑥𝑎
1
⊗· · ·⊗𝑥𝑎𝑘

! 1where 𝑎1, . . . , 𝑎𝑘
are the arcs that end at 𝑣. The functoriality of Udual (C) is such that when we contract an edge {𝑎, 𝑎†}
the two incident labels 𝛼𝑠 (𝑎) and 𝛼𝑠 (𝑎† ) are “contracted” using the copairing 1 ! 𝑥𝑎 ⊗ 𝑥𝑎† . That
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this sketched data indeed can be assembled into a modular operad is one of the main applications

of Theorem 3.18. We can think of Udual (C) and its functoriality as encoding “string calculus for

dualisable objects in C”.

[todo: add figure of graph labelled by Udual

]

Remark 3.20. The modular operad U from Example 2.25 is Dwyer–Kan equivalent to the modular

operad U (Vect). The only difference between the two is that in U we chose symmetric self-duality

data for each vector space, but we can forget this extra data to get a map U ! U (Vect). (Precisely

defining this map would require opening the blackbox Theorem 3.7, which we won’t do here.)

This map is fully faithful (assuming that the blackbox does what it’s supposed to) and it is also

essentially surjective because every vector space admits a self-duality.

Note that it is sometimes convenient to build a version of U (C) where the colours aren’t just object

of C, but rather self-dual objects of C equipped with symmetric self-duality data. This equivalently

amounts to replacing the space of objects of U (C) with its C2-fixed points. The reason this can be

useful is that in the resulting modular operad U self−dual (C) the action of C2 on U self−dual (C) (𝔢) is

trivial. There’ll always be a fully faithful comparison mapU self−dual (C) ! Udual (C), but in general it

won’t be essentially surjective as objects in C need not be isomorphic to their dual. Moreover, it can

be a little confusing to work with U self−dual (C) as it is not complete: for example, there are several

non-isomorphic self-dualities on R𝑛
(eg. the positive definite and the negative definite one), but

they all define isomorphic colours in the modular operad U self−dual (C) in the sense that there are

invertible binary operations between them. (This is analogous to how we might define a category

whose objects are finite dimensional Hilbert spaces, but where morphisms are just arbitrary linear

maps – such a category is just equivalent to the category of finite dimensional vector space.)

TFTs as modular algebras. We define modular algebras analogously to how we defined algebras

over properads.

Definition 3.21. For a modular operad O and a symmetric monoidal ∞-category C we define

Alg
mod

O (C) ≔ Map
ModOp

(O,Udual (C)).

By Theorem 3.18 this agrees with the ∞-category Alg
prpd

𝜑∗O (C). Combining all the above we have

Fun
⊗ (Bord𝑑 , C) ≃ Map

Prpd
(B𝑑 ,U (C)) ≃ Map

ModOp
(B𝑑 ,Udual (C)) = Alg

mod

B𝑑
(C).

The 1D cobordism hypothesis. As another application of Theorem 3.18 we can classify TFTs in

dimension 1. To do this we will need the adjunction

Free : SBC2 ⇄ ModOp :col

where the right adjoint col sends O to its space of colours col(O) = O(𝔢). The left adjoint exists

for formal reasons, but it also turns out to be fairly computable. We’ll see more examples of how

to do this later – it basically amounts to computing a left and a right Kan extension, as explained

in a Exercise 3.25. For now we’ll use the following fact as a black-box.
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Lemma 3.22. The 1-dimensional manifold modular operad B1 is equivalent to the free modular operad
Free(C2).

Corollary 3.23. For every symmetric monoidal ∞-category C, evaluating a 1D TFT at the positive point
pt+ yields an equivalence

evpt+ : Fun
⊗ (Bord1, C)

≃
−−! (Cdbl)≃.

Proof. By concatenating adjunctions we get

Env(Free(−)) : SBC2 ⇄ ModOp ⇄ Cat
⊗
∞ : col(Udual (−)) = (−dual)≃

so that the claim follows from Bord1 = Env(B1) = Env(Free(𝐶2)) and

Fun
⊗ (Bord1, C) ≃ MapSBC

2
(C2, (Cdbl)≃) ≃ (Cdbl)≃. □

Exercise 3.24. Describe the universal property of the unoriented 1-dimensional bordism category

Bord
unor

1
. What about more general tangential structures?

Exercise 3.25. Prove Lemma 3.22. To do this, consider the following full inclusions of graph

categories.

BC2 = {𝔢} 𝑖
−−! linGr 𝑗

−−! Grbiv 𝑘
−−! Gr

Here linGr is the full subcategory on the subdivisions of 𝔢 (i.e. all graphs such that Γ+ \ {∞} is

homeomorphic to R), and Grbiv

is the full subcategory of bivalent graphs. These functors induce

restrictions

Fun(BC2, S)
𝑖∗
 − Fun(linGr, S) 𝑗∗

 − Fun(Grbiv, S) 𝑘∗
 − Fun(Gr, S)

all of which preserve the Segal condition. Show that the left Kan extension 𝑖!, the right Kan extension

𝑗∗ and the left Kan extension 𝑘 ! all preserve Segal objects and that thus we have adjunctions

SBC2

𝑖
! !
𝑖∗

Seg(linGr) 𝑗∗
 !
𝑗∗

Seg(Grbiv) 𝑘
! !

𝑘∗
Seg(Gr)

Moreover show that 𝑗∗ is conservative and that thus 𝑗∗ ⊣ 𝑗∗ is an adjoint equivalence. Conclude

that we have an adjunction

𝑘 ! 𝑗∗𝑖! : SBC2 ⇄ Seg(Gr) : 𝑖∗ 𝑗∗𝑘∗

Exercise 3.26. Describe a symmetric monoidal ∞-category D such that for every symmetric

monoidal category C there is an equivalence

Fun
⊗ (D, C) ≃ C ×C×C Ar(C).

What is MapD (1,1)? Show that if 𝑓 : 𝑥 ! 𝑥 is an endomorphism of a dualisable object in 𝑥, then

Tr( 𝑓 ◦𝑛) = ev𝑥 ◦ ( 𝑓 ◦𝑛 ⊗ id𝑥∨ ) ◦ coev𝑥 has a 𝐶𝑛-action.
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4 Cyclic operads

The goal of this section is to understand TFTs “restricted to genus 0”. Genus 0 surfaces can be

glued to one another, but they cannot be self-glued as that would increase genus. Thus they do not

form a modular operad, but just a cyclic operad. It will turn out that cyclic operads and algebras

over them are easier to understand as they are closely related to ordinary (∞-)operads and we can

quantify the difference between these two notions. Using this theory we will also be able to classify

“handlebody TFTs” as those turn out to be freely generated from genus 0.

4.1 Cyclic operads

Operads vs cyclic operads. Recall that we defined a cyclic operad as a functor O : Tree ! S
satisfying the Segal condition. The ∞-category of cyclic operads is then the full subcategory

CycOp ⊂ Fun(Tree, S)

on these functors. Every cyclic operad has an underlying operad, which we can obtain by precom-

posing with the forgetful functor

Ωop = dTree1−out
𝜓
−−! Tree O

−−! S .

We’ll denote this restriction by O ≔ 𝜓∗O What was the space of (𝑘 + 1)-ary operations in the cyclic

operad O(𝔠𝑘+1) is now the space of 𝑘-ary operations in the underlying operad O(𝔠𝑘,1) = O(𝔠𝑘+1).
If we use the shorthand notation for arity 𝑘 operations this leads to the following confusing degree

shift

O(𝑘) = O(𝔠𝑘,1) = O(𝔠𝑘+1) = O(𝑘 + 1).

Remark 4.1. Getzler and Kapranov [GK98, (1.4)] deal with this degree shift by introducing the

notation O((𝑘 + 1)) ≔ O(𝔠𝑘+1) and O(𝑘) ≔ O(𝑘) = O(𝔠𝑘,1). As we generally work with many-

coloured (cyclic) operads we will rarely use the notation O(𝑘) anyway, so it will be more intuitive

to distinguish the two sides by writing 𝔠𝑘,1 vs. 𝔠𝑘+1.

Classically, a cyclic operad can be defined as an operad P together with an extension of the Σ𝑘-

action on P (𝔠𝑘,1) to a Σ𝑘+1-action, subject to a few axioms.
13

In this perspective, a cyclic operad

is an operad where one can (cyclicly?) permute the output and inputs. Coherently, this approach

won’t work directly as there are a lot of compatibilities between these group-actions and the higher

coherence of an (∞)-operad, which it would be impracticable to spell out. Instead, we’ll later

describe cyclic operads as operads equipped with a “dualising module”.

We’ll think about operations in cyclic operas as not having outputs, but only inputs. One can then

compose two such operations whenever they have dual inputs. More precisely, let

O(𝑥1, . . . , 𝑥𝑘) ≔ fib(𝑥
1
,...,𝑥𝑘 )

(
O(𝔠𝑘) −! O(𝔢)×𝑘

)
13

To be precise, this gives an “un-augmented” version of cyclic operads where the minimum arity is O (1) = P (0) (if

P = O). The definition of cyclic operad we have here also has a space O (0) = O (𝔠
0
) , which is entirely forgotten when

passing to the underlying operad. One can obtain operations of cylic arity 0 by composing two operations of cyclic arity 1.

This isn’t possible in the underlying operad as the two corresponding operations of arity 0 can’t be composed.
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denote the space of 𝑘-ary operations with fixed input colours 𝑥1, . . . , 𝑥𝑘 . Then a cyclic operad has

an involution (−)∨ : O(𝔢) ! O(𝔢) on its space of colours and composition operations

O(𝑥1, . . . , 𝑥𝑘−1, 𝑦) ×O(𝑧1, . . . , 𝑧𝑙−1, 𝑦
∨) −! O(𝑥1, . . . , 𝑥𝑘−1, 𝑧1, . . . , 𝑧𝑙−1)

Examples of cyclic operads. To get a better idea of cyclic operads, let’s consider some examples.

See table 2. Here for any modular operad M we can think of it as a cyclic operad by restricting it

along the full inclusion 𝑖 : Tree ↩! Gr. This 𝑖 induces a functor

𝑖∗ : ModOp = Seg(Gr) −! Seg(Tree) = CycOp,

which we can think of as forgetting the self-gluing operations of a modular operads. If we

for example take B𝑑 , then the cyclic operad obtained this way has an interesting cyclic suboperad

Bsph

𝑑
⊂ B𝑑 that is defined by restricting to those colours that are (𝑑−1)-spheres and those operations

that are of the form 𝑆𝑑 \ ⊔𝑘R
𝑑
. Note that this would not be a well-defined modular suboperad of

B𝑑 , as it is not closed under self-gluing.

Some of the cyclic operads listed in the table actually coincide. Recall the handlebody modular

operad H ⊂ B𝜕
3

from Example 2.32. Using Smale’s theorem Diff(𝑆2) ≃ SO(3) one can show that

there is an equivalence

ESO

2
≃ Bsph

2
≃ Hsph

and using the Smale conjecture Diff(𝑆3) ≃ SO(4) (as proved by Hatcher) one can show that there

is an equivalence of cyclic operads

ESO

3
≃ Bsph

2
.

Proving these equivalence mostly amounts to constructing an equivalence of operads and then

using Theorem 4.9, which we’ll see later in this section.

From operads to cyclic operads. We will later be able to describe handlebody-TFTs as cyclic

algebras over a cyclic operad and even for the usual 2-TFTs the starting point of the classification

will be cyclic algebras. To make this kind of description actually useful we’ll have to describe cyclic

algebras in more concrete terms. Our goal will thus be to write

cyclic algebras over O = algebras over O + extra data

Since we have a fairly good handle of algebras over O (for the Os involved) this will work as a

“concrete description” as long as the extra data is managable. In fact, as cyclic algebras are just

maps of cyclic operads, it will be more convenient to prove a version of this one category level up,

i.e. to prove a statement of the form

cyclic operads = operads + extra data.

Here the relevant additional structure are certain right modules.

35



Operad O(𝔠𝑘,1) Env(O) AlgO (C) AlgO (Cat∞) O(𝔠𝑘+1)

Com = E∞ ∗ Fin commutative algebras sym. mon. cat. ∗

Ass = E1 Σ𝑘 = {total orders on 𝑘} Assoc associative algebras monoidal cat. {cyclic orders on k+1}

E𝑛 ⊔𝑘𝐷
𝑛 ↩! 𝐷𝑛

rectilinear Disk
fr

𝑛 Alg
E

1

(. . .Alg
E

1

(C) . . . ) braided mon. generally not cyclic

ESO

𝑛 = E𝑛/SO(𝑛) ⊔𝑘𝐷
𝑛 ↩! 𝐷𝑛

oriented Disk
or

𝑛 Alg
E𝑛

(C)ℎSO(𝑛)
ribbon br. mon. ✓

Bsph

𝑑
⊂ B𝑑 𝐵Diff𝜕 (𝑆𝑑 \ ⊔𝑘+1R

𝑑) ⊂ Bord𝑑 ? ? 𝐵Diff𝜕 (𝑆𝑑 \ ⊔𝑘+1R
𝑑)

M ∈ ModOp M(𝔠𝑘+1) ⊂ Env(M) ? ? M(𝔠𝑘+1)

Table 2: Examples of (cyclic) operads

3
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4.2 Right modules over operads

Definition 4.2. A right
14

module over an operad O is a functor

𝑋 : Env(O)op −! S

and we write rModO ≔ PSh(Env(O)) for the ∞-category of right modules. Note that here we are

using the symmetric monoidal envelope construction for operads, as defined in [Lur, §2.2.4], which

is a special case of the envelope construction for properads, as discussed in Example 3.8.

Since an object in the envelope is a formal tensor product of colours of the operad, we can think of

the right module as contravariantly assigning to each such tensor product a space

𝑥1 ⊠ · · · ⊠ 𝑥𝑘 7−! 𝑋 (𝑥1 ⊠ · · · ⊠ 𝑥𝑘)

with the functoriality being such that if 𝛼 ∈ O(𝑦1, . . . , 𝑦𝑙 ; 𝑥1) is an operation with output colour 𝑥1

(or equivalently 𝑥𝑖) there is a morphism

𝑋 (𝛼) : 𝑋 (𝑥1 ⊠ · · · ⊠ 𝑥𝑘) −! 𝑋 (𝑦1 ⊠ · · · ⊠ 𝑦𝑙 ⊠ 𝑥2 ⊠ · · · ⊠ 𝑥𝑘).

Disk presheaves. A particular interesting example of right modules is the case of ESO

𝑛 where the

monoidal envelope is Disk𝑛. Recall that this category has objects ⊔𝑘R
𝑛

for 𝑘 ≥ 0 and the mapping

spaces are the space of smooth embeddings. Thus a right module is a functor

𝑋 : Disk
op

𝑛 −! S .

Such functors are also called disk presheaves and the category of right modules is

rModESO

𝑛
= PSh(Disk𝑛).

Example 4.3. If 𝑀 is any 𝑛-manifold we can define a right module 𝐸𝑀 by

𝐸𝑀 (⊔𝑘R
𝑛) ≔ Emb(⊔𝑘R

𝑛, 𝑀).

This can be thought of as recording all the framed configuration spaces of 𝑀 as well as certain

collapse maps between them. This is the basis of Goodwillie–Weiss embedding calculus, where one

for example defines

𝑇∞Emb(𝑀, 𝑁) ≔ Map
PSh(Disk𝑛 ) (𝐸𝑀 , 𝐸𝑁 ).

While it is not necessary to think of these disk presheaves as right modules over an operads in

order to do embedding calculus, this has turned out to be a very fruitful perspective, see [KK24a].

Example 4.4. Another concept that fits into this framework is factorisation homology, which we

will encounter again later. Suppose for simplicity that C is a symmetric monoidal category that

has sufficient colimits and that for every 𝑥 ∈ C the functor 𝑥 ⊗ − : C ! C preserves colimits.

14
The name comes from the point of view where one defines (one-coloured) operads as algebras for the composition

product in symmetric sequences. (A version of this also works for multiple colours.) In this setting operads are associative

algebras, so we can talk about left and right module over them. Left modules turn out to be algebras (over the operad) in

spaces and right modules turn out to be, well, right modules in the above sense.
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(Eg. C ∈ CAlg(PrL).) An ESO

𝑛 -algebra 𝐴 in C can be written as a symmetric monoidal functor

Disk𝑛 ! C whose value at ⊔𝑘R
𝑛

is 𝐴⊗𝑛
. By composing with the functor MapC (−, 𝑥) for some object

𝑥 ∈ C we obtain another disk presheaf MapC (𝐴⊗− , 𝑥). The mapping space from 𝐸𝑀 into this disk

presheaf can be expressed in terms of factorisation homology as

Map
PSh(Disk) (𝐸𝑀 ,MapC (𝐴

⊗− , 𝑥)) ≃ MapC
(
∫
𝑀

𝐴, 𝑥
)
.

Via the Yoneda lemma this in fact uniquely characterises ∫𝑀 𝐴 ∈ C as we vary 𝑥.

A graph pattern for right modules. In order to put right modules on the same footing as the other

algebraic structures we’re considering it will be useful to write them as Segal spaces for a certain

graph pattern. This will in particular avoid the use of the monoidal envelope Env: Op∞ ! Cat
⊗
∞

whose construction we haven’t really discussed. What we will describe is not the category rModO
of right modules over a specific operad O, but rather the more general category where objects

are a pair of an operad and a right module over it. Formally, this obtained as the cartesian

unstraightening

rMod ≔ Un
cart

(
Op

op

∞
Env

−−! (Cat
⊗
∞)op −! Cat

op

∞
PSh(−)
−−−−! Cat∞

)
.

Proposition 4.5. There is an equivalence

Seg(dTree≤1−out) ≃ rMod

between the category of Segal spaces over dTree≤1−out, the category of directed trees where each vertex has
at most one outgoing edge, and the category of operads and right modules.

Proof idea. A tree𝑇 ∈ dTree≤1−out

has two types of vertices: those with an outgoing edge, for which

the local corolla is 𝔠𝑘,1, and those with no outgoing edges for which the local corolla is 𝔠𝑘 . The

idea is that the former should be labelled by 𝑘-ary operations of an operad whereas the latter

should be labelled by the values of a right module over said operad (when evaluated on 𝑘-fold

tensor products of colours). When contracting edges in this type of tree we can either identify

two vertices with outgoing edge, in which case we use the operadic multiplication, or two vertices

where one of them has an outgoing edges, in which case we use the action of the operad on the

right module. In order to make this precise one has to look into the details of the construction of

the symmetric monoidal envelope Env and relate it to trees. □

The morphism of graph patterns

𝜓 : dTree≤1−out −! Tree

that forgets the direction of the edges induces a functor

𝜓∗
: CycOp = Seg(Tree) −! Seg(dTree≤1−out) = rMod.

If we inspect this more closely, we see that it sends a cyclic operad O to the tuple (O, 𝜔O) where

O is the underlying operad as before and 𝜔O is a right module over O given by the cyclic operad

itself, in the sense that

𝜔O (𝑥1 ⊠ · · · ⊠ 𝑥𝑘) ≔ O(𝑥1, . . . , 𝑥𝑘)
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We can think about this as saying that

“every cyclic operad is a right module over itself.”

Note that, confusingly, this is not the tautological right module structure of an operad over itself

that we might be able to construct for one-coloured operad. Instead it is an interesting module that

involves a shift of the arities by one. Writing this in a simplified notation that ignores colours we

have

O(𝑘) ≃ 𝜔O (𝑘 + 1).

4.3 Cyclic operads via right modules

In this section we’ll see a theorem that says that the data (O, 𝜔O) of the underlying operad and its

canonical right module suffices to reconstruct the cyclic operad O.

Defining dualising modules. The basic idea is that because we have O(𝑘) ≃ 𝜔O (𝑘 + 1) and the

symmetric group Σ𝑘+1 acts on the right we can transport the action along the equivalence to recover

the symmetry of O(𝑘 + 1) = O(𝑘). The higher coherences should follow by a more sophisticated

version of this argument. However, in order for this to be a useful description the equivalence

between the operad and the right module should not be additional coherence data, but rather

should fall out of the existing structure. We can achieve this by imitating the notion of a duality

pairing.

Definition 4.6. Let𝜔 : Env(O)op ! S be a right module over an operad O. We say that two colours

𝑐, 𝑐∨ ∈ col(O) are dual with respect to 𝜔 if there is an element 𝑒 ∈ 𝜔(𝑐∨⊠𝑐) that is a non-degenerate

pairing in the sense that the composite maps (defined by acting on 𝑒)

O(𝑥1, . . . , 𝑥𝑘 ; 𝑐) id×𝑒
−−−! O(𝑥1, . . . , 𝑥𝑘 ; 𝑐) × 𝜔(𝑐∨ ⊠ 𝑐) −! 𝜔(𝑐∨ ⊠ 𝑥1 ⊠ · · · ⊠ 𝑥𝑘)

O(𝑥1, . . . , 𝑥𝑘 ; 𝑐∨) id×𝑒
−−−! O(𝑥1, . . . , 𝑥𝑘 ; 𝑐∨) × 𝜔(𝑐∨ ⊠ 𝑐) −! 𝜔(𝑥1 ⊠ · · · ⊠ 𝑥𝑘 ⊠ 𝑐)

both are equivalences for any choice of colours 𝑥1, . . . , 𝑥𝑘 ∈ col(O). We say that 𝜔 is a dualising

module for O if every colour of O has a dual (with respect to 𝜔).

The motivating example for this definition is the following setting, where the above essentially

recovers the notion of a duality pairing in a (symmetric) monoidal category.

Example 4.7. If O = U (C) ∈ Op∞ is the underlying operad of a symmetric monoidal category C
then we can define a right module on it by

𝜔C (𝑥1 ⊠ · · · ⊠ 𝑥𝑘) ≔ MapC (𝑥1 ⊗ · · · ⊗ 𝑥𝑘 ,1C ).

Suppose 𝑒 : 𝑥 ⊗ 𝑦 ! 1C is a duality pairing in a C, in the sense that there is a compatible copairing

𝑐 : 1C ! 𝑦 ⊗ 𝑥 such that

(𝑒 ⊗ id𝑥) ◦ (id𝑥 ⊗ 𝑐) = id𝑥 and (id𝑦 ⊗ 𝑒) ◦ (𝑐 ⊗ id𝑦) = id𝑦 .
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Then we can think of 𝑒 as a point in 𝜔C (𝑥 ⊗ 𝑦) and as such it will be a non-degenerate pairing

because it induces equivalences

MapC (𝑧, 𝑦) ≃ MapC (𝑧 ⊗ 𝑥,1) and MapC (𝑧, 𝑥) ≃ MapC (𝑧 ⊗ 𝑦,1).

Therefore, if C is a symmetric monoidal category where every object is dualisable (i.e. rigid) then

𝜔C will be a dualising module for U (C). (Note, however, that the converse of this is not true:

there interesting examples of non-rigid symmetric monoidal categories whose underlying operad

admits a dualising module, these turn out to be
15

exactly the Grothendieck–Verdier categories of

[BD13], which also appear in [MW20].)

The theorem. While the above emulates the notion of a duality pairing this analogy is not quite

perfect: as the relation between a duality pairing and its copairing can be expressed in terms of

equations, duality pairings are automatically preserved by symmetric monoidal functors. The

same is not true for non-degenerate pairings in right modules: maps of right modules need not

preserve them. Thus we need to impose this condition by hand when defining the category of

dualising modules.

Definition 4.8. The ∞-category of operads with dualising modules is defined as the subcategory

rMod
dual ⊂ rMod whose objects are those tuples (O, 𝜔) where 𝜔 is a dualising module for O

and whose morphisms are ( 𝑓 , 𝛼) : (O, 𝜔) ! (P , 𝜔′) where 𝑓 : O ! P is any map of operads and

𝛼 : 𝜔! 𝑓 ∗𝜔′
is a map of O right modules that preserves non-degenerate pairings: if 𝑒 ∈ 𝜔(𝑐∨ ⊠ 𝑐)

is non-degenerate, we require that 𝛼(𝑒) ∈ 𝜔′ ( 𝑓 (𝑐∨) ⊠ 𝑐) is also non-degenerate.

The key theorem describing cyclic operads is the following. A version of this for the one-coloured

(rational) case was proven by Willwacher [Wil24].
16

Theorem 4.9 ([*cyclic]). The forgetful functor 𝜓 : dTree≤1−out −! Tree induces an equivalence

𝜓∗
: CycOp

cpl ≃
−−! rMod

dual,cpl ⊂ rMod.

Proof idea. The proof of this is similar to theorem Theorem 3.18 by considering for each tree 𝑇 the

category of directed subdivisions of 𝑇 such that each vertex has at most one outgoing edge. This

category can be identified with the poset of simplices of 𝑇 and is thus weakly contractible. In

assembling the proof one needs to be a little more careful as rMod
dual

is not a full subcategory of

rMod. □

Examples of dualising modules. By Theorem 4.9 we can promote an operad O to a cyclic operad,

simply by constructing a right module over it and checking that with respect to this right module

all colours have a dual. Often our operads will happen to have a connected space of colours, in

which case we only need to find a single non-degenerate duality pairing.

15
“Turn out to be” here means that with some work one can establish an equivalence between (symmetric monodial

∞-categories C plus a dualising module for U (C )) and an ∞-categorical generalisation of the definition in [BD13].

16
Note that there are some aesthetical differences between Willwacher’s theorem and the theorem as it is stated here, which

mostly come from the fact that Willwacher works with 1-coloured cyclic operads while we allow multiple colours. This

is, for instance, the reason that in our category rMod
dual

preserving the duality pairings is a condition that is homotopy

invariant, whereas for Willwacher the right module is pointed (by a non-degenerate pairing) and maps have to strictly

preserve this base point.
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Example 4.10. (1) The operad E∞ = Com has a dualising module given by the terminal right

module 𝜔E∞ : Fin
op ! S with 𝜔E∞ (𝐴) = ∗.

(2) For the operad E1 = Ass the envelope is Assoc and we can define a dualising right module

by

𝜔E
1
: Assocop −! S

𝐴 7−! {cyclic orders on 𝐴}.

This is functorial in maps in Assocop
because if we have a cyclic order on 𝐴 and a map 𝐵! 𝐴

with totally ordered preimages, then we can define a cyclic order on 𝐵 by replacing each point

in 𝐴 with its totally ordered preimage. The duality pairing is given by 𝑒 ∈ 𝜔E
1
(2) the unique

cyclic order on two elements. To see that it is a duality pairing we observe that the map

E1 (𝑛) = {total orders on 𝑛} −! {cyclic orders on 𝑛 + 1} = 𝜔E
1
(𝑛 + 1)

defined by acting on 𝑒 is indeed a bĳection.

(3) The envelope of ESO

𝑛 is the category Disk𝑛 of (disjoint unions of oriented) 𝑛-disks. We can

define a right module over it as the quotient of the natural SO(𝑛 + 1)-action on the right

module 𝐸𝑆𝑛 :

𝜔ESO

𝑛
: Disk𝑛 −! S
⊔𝑘R

𝑛 −! Emb(⊔𝑘R
𝑛, 𝑆𝑛)//SO(𝑛 + 1)

One checks that this is a dualising module. This equips ESO

𝑛 with the structure of a cyclic

operad.

(4) The dualising module 𝜔C (𝑥1 ⊠ · · · ⊠ 𝑥𝑛) ≔ MapC (𝑥1 ⊗ · · · ⊗ 𝑥𝑛,1) from Example 4.7 improves

the underlying operad U (C) of a rigid symmetric monodial ∞-category to a cyclic operad.

Remark 4.11. It is a theorem of Budney [Bud08] that a certain model of the little framed 𝑛-disk

operad can be promoted to a cyclic operad, and thus that ESO

𝑛 “is” a cyclic operad. Our approach

seems simpler, but much more implicit, as we for instance cannot write a model in topological

spaces. Note that a priori we now have two cyclic structures on the same operad, but in the case at

hand, it should not be too hard to compare our dualsing module with the one Budney constructs

and to thus get an equivalence of cyclic operads.

Exercise 4.12. Check that 𝜔ESO

𝑛
is indeed a dualising module. Construct a dualising module for

E𝑛 whenever 𝑆𝑛 is a Lie group (𝑛 = 1, 3), recovering for 𝑛 = 1 the “cyclic orders” dualising module

from Example 4.10. Show that if E𝑛 admits a dualising module, then 𝑆𝑛 is a loop space and thus

𝑛 = 1, 3,∞. (This last part is hard.)

Question 4.13. Is there a geometric model for the cyclic structure on E3, analogous to the “conformal”
model Budney [Bud08] gives for the cyclic structure on ESO

𝑛 ?

4.4 Cyclic algebras

We can define cyclic algebras analogously to modular algebras as follows.
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Definition 4.14. Given a symmetric monoidal ∞-category C and a cyclic operad O we can define

the ∞-category of cyclic O-algebras in C, analogously to how we defined modular algebras, as

Alg
cyc

O (C) ≔ Map
CycOp

(O,Udual (C))

where, by abuse of notation, we let Udual (C) denote the cyclic operad obtained from the modular

operad of the same name.

As algebras over the induced modular operads. To give an alternative description, we note that

the forgetful functor that we defined as restriction along 𝑖 : Tree ↩! Gr admits a left adjoint

Ind
mod

cyc
: CycOp = Seg(Tree) ⇄ Seg(Gr) = ModOp : 𝑖∗.

Using the left adjoint we can rewrite

Alg
cyc

O (C) = Map
CycOp

(O,Udual (C)) ≃ Map
ModOp

(Ind
mod

cyc
(O),Udual (C)) = Alg

mod

Ind
mod

cyc
(O) (C)

Remark 4.15. That this left-adjoint exists follows from the adjoint functor theorem, and we can

write it as the composite of left Kan extension 𝑖! and the “Segalification”, i.e. the left adjoint to

the full inclusion Seg(Gr) ↩! Fun(Gr, S). This Segalification is generally hard to compute, but it

turns out that one can change some of the graph patterns involved so that instead of 𝑖! we need to

compute the left Kan extension along another functor 𝑗 : gGr=0 ↩! gGr, which has the property that

𝑗! preserves Segal spaces, so that no Segalification is needed. (See Exercise 3.25 for an analogous

story.) We’ll see more of this in the final lecture.

For now we’ll use the following fact as a black-box, but we’ll see a bit more about its proof in the

next lecture.

Proposition 4.16. There are equivalences

Ind
mod

cyc
(ESO

2
) ≃ Ind

mod

cyc
(Hsph) ≃ H ⊂ B𝜕

3

and similarly, Ind
mod

cyc
(ESO

3
) can be identified as a sub modular operad of B3 with operations

Ind
mod

cyc
(ESO

3
) (𝔠𝑘) =

∐
𝑔≥0

𝐵Diff((𝑆1 × 𝑆2)#𝑔 \ ⊔𝑘𝐷
3).

Proof idea. The first statement is due to Giansiracusa [Gia11], who proves this using the contractibil-

ity of the disk complex. (He uses a slightly different model of the handlebody modular operad,

but a similar argument applies here.) The second claim can be deduced from [BBS24, Proposition

3.12]. □

Combining this we above, we get that symmetric monoidal functors out of the handlebody ∞-

category are equivalent to ESO

2
-algebras. Recall that the handlebody category is the subcategory

Hbdy ⊂ Bord
𝜕
3

whose objects are disjoint unions of 2-disks and whose morphisms are handlebod-

ies. It is the monoidal envelope of the handlebody modular operad.
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Corollary 4.17. There are equivalences

Fun
⊗ (Hbdy, C) ≃ Alg

mod

H (C) ≃ Alg
cyc

ESO

2

(C).

In analogy with how TFTs Bord2 ! LinCat are modular functors, symmetric monoidal functors

Hbdy! LinCat are called “ansular functors” [MW23].

Remark 4.18. Analogously to Proposition 4.16 one can also describe the free modular operad on

the cyclic operadE∞. Using Culler–Vogtmann’s contractibility of “outer space” one can show that

it has operations

Ind
mod

cyc
(E∞) (𝔠𝑘) ≃

∐
𝑛≥0

𝐵hAut𝑘 (∨𝑛𝑆
1)

and in particular for 𝑘 = 0 we get the classifying spaces for the groups Out(𝐹𝑛) of outer automor-

phisms of the free groups. The monoidal envelope of this modular operad is the subcategory

Env(Ind
mod

cyc
(E∞)) ⊂ Cospan(S)

of the ∞-category of cospans of spaces, where objects are finite sets and morphisms are cospans

𝐴! 𝑋  𝐵 such that 𝑋 is equivalent to a finite 1-dimensional CW complex.

Cyclic algebras in terms of right modules. Since cyclic algebras are just defined as maps of cyclic

operads, we can use Theorem 4.9 to express them as algebras over the underlying operad and a

non-degenerate map of right modules. Concretely, a cyclic O-algebra in C consists of two pieces of

data

𝐴 ∈ AlgO (C) and 𝛼 : 𝜔O ! 𝐴∗𝜔C .

We can think of 𝐴 as a symmetric monoidal functor Env(O) −! C that sends 𝑥1 ⊠ · · · ⊠ 𝑥𝑘 to

𝐴(𝑥1) ⊗ · · · ⊗ 𝐴(𝑥𝑘), or simply to 𝐴⊗𝑘
if O is one-coloured. Thus the pulled back right module 𝐴∗𝜔C

can be described as

𝐴∗𝜔C : Env(O)op −! S
𝑥1 ⊠ · · · ⊠ 𝑥𝑘 7−!MapC (𝐴(𝑥1) ⊗ · · · ⊗ 𝐴(𝑥𝑘),1),

which we’ll usually write simply as MapC (𝐴⊗− ,1). The map 𝛼 is a non-degenerate map of right

modules, so it is a map

𝛼 : 𝜔O (−) −!MapC (𝐴
⊗− ,1)

in PSh(Env(O)) such that it preserves non-degenerate pairings. In other words, whenever 𝑒 ∈
𝜔O (𝑥 ⊠ 𝑦) is a non-degenerate pairing between two colours 𝑥, 𝑦 ∈ col(O), the resulting

𝛼(𝑒) ∈ MapC (𝐴(𝑥) ⊗ 𝐴(𝑦),1)

is required to be a duality pairing between 𝐴(𝑥) and 𝐴(𝑦).

Example 4.19 (Cyclic E∞-algebras). A cyclic algebra over E∞ consists of an E∞-algebra 𝐴 ∈
Alg

E∞
(Cdbl) and a non-degenerate map 𝛼 : 𝜔E∞ ! 𝐴∗𝜔C . Since 𝜔E∞ is the terminal right module

we can easily compute the space of right module maps as

Map
PSh(Fin) (𝜔E∞ , 𝐴

∗𝜔C ) ≃ Map
PSh(Fin) (∗,MapC (𝐴

⊗− ,1)) ≃ lim

Fin
op

MapC (𝐴
⊗− ,1) ≃ MapC (𝐴,1)
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where the last step uses that 1 ∈ Fin
op

is initial. So the right module map 𝛼 is uniquely determined

by a map 𝜏 : 𝐴! 1, which we think of as a “trace” on 𝐴. The value of 𝛼 on 𝑘 is then the composite

𝛼𝑘 = (𝐴⊗𝑘 𝜇
−−! 𝐴

𝜏
−−! 1) ∈ MapC (𝐴

⊗𝑘 ,1)

where the first map is the 𝑘-fold multiplication (i.e. the unit if 𝑘 = 0). The non-degeneracy condition

thus means exactly that

𝛼2 = 𝜏 ◦ 𝜇 : 𝐴 ⊗ 𝐴! 1

is a non-degenerate duality pairing between 𝐴 and itself.

We can study cyclicESO

𝑛 -algebras similarly. For simplicity, assume that V ∈ CAlg(PrL), so that V is

a ∞-category with sufficient colimits and with a symmetric monoidal product that preserves them.

Example 4.20 (Cyclic ESO

𝑛 -algebras). A cyclic ESO

𝑛 -algebra in V consists of an ESO

𝑛 -algebra 𝐴 ∈
Alg

ESO

𝑛
(Vdbl) (which we may describe as an SO(𝑛)-fixed point in Alg

E𝑛
(Vdbl)) and a non-degenerate

map 𝛼 : 𝜔ESO

𝑛
! 𝐴∗𝜔V . Recall that Env(ESO

𝑛 ) = Disk𝑛, so that rModESO

𝑛
= PSh(Disk𝑛). Using the

characterisation of factorisation homology from Example 4.4 we can describe the space of right

module maps as

Map
PSh(Disk𝑛 ) (𝜔ESO

𝑛
, 𝐴∗𝜔V ) ≃ Map

PSh(Disk𝑛 ) (Emb(−, 𝑆𝑛)//SO(𝑛 + 1),MapV (𝐴
⊗− ,1))

≃ Map
PSh(Disk𝑛 ) (Emb(−, 𝑆𝑛),MapV (𝐴

⊗− ,1))SO(𝑛+1)

≃ MapV

(∫
𝑆𝑛

𝐴,1

)
SO(𝑛+1)

.

Thus the data of 𝛼 is equivalent to an SO(𝑛 + 1)-invariant map

𝜏 :

∫
𝑆𝑛

𝐴 −! 1,

which we could also further write as a map (
∫
𝑆𝑛 𝐴)//SO(𝑛 + 1) ! 1. We can think of this as a

“symmetric trace” on 𝐴. The non-degeneracy condition means that the composite map

𝐴 ⊗ 𝐴 =

∫
𝐷𝑛⊔𝐷𝑛

𝐴 −!

∫
𝑆𝑛

𝐴 −! 1

is a non-degenerate duality pairing between 𝐴 and itself.

Calabi–Yau algebras. We can summarise the structure we found above as follows.

Definition 4.21. An E∞-Calabi–Yau algebra in C is a tuple (𝐴, 𝜏) of an E∞-algebra 𝐴 in C and a

non-degenerate trace 𝜏, i.e. a map 𝜏 : 𝐴! 1 such that it induces a self-duality on 𝐴 as above.

Similarly, anESO

𝑛 -Calabi–Yau algebra in C is a tuple (𝐴, 𝜏) of anESO

𝑛 -algebra 𝐴 in C and an SO(𝑛+1)-
invariant map 𝜏 :

∫
𝑆𝑛 𝐴! 1 such that it induces a self-duality on 𝐴 as above.

Corollary 4.22. There is an equivalence between cyclic E∞/ESO

𝑛 -algebras in C and E∞/ESO

𝑛 -Calabi–Yau
algebras in C.
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Example 4.23. For 𝑛 = 1 an E1-Calabi–Yau algebra consists of an E1-algebra 𝐴 together with an

SO(2)-invariant map 𝜏 :

∫
𝑆1

𝐴! 1 such that the induced pairing

𝐴 ⊗ 𝐴 =

∫
𝐷1⊔𝐷1

𝐴 −!

∫
𝑆1

𝐴
𝜏
−−! 1

is a duality pairing. In the case of the category of vector spaces

∫
𝑆1

𝐴 = 𝐻𝐻0 (𝐴) = 𝐴/[𝐴, 𝐴] and thus

we can think of the trace as a function 𝜏 : 𝐴! 𝑘 that vanishes on the commutator; or equivalently

that satisfies 𝜏(𝑎𝑏) = 𝜏(𝑏𝑎). Thus this recovers the notion of a symmetric Frobenius algebra.

Remark 4.24. In [Lur, §4.6.5] Lurie defines a “symmetric Frobenius algebra” to be an E1-algebra

𝐴 with a non-degenerate trace

∫
𝑆1

𝐴! 1. He notes that one can also add SO(2)-invariance data to

the definition and that this condition plays an important role in the classification of (extended) 2D

TFTs [Lur, Remark 4.6.5.9].

Combining the above consequences of Theorem 4.9 with the fact that the handlebody modular

operad H is freely generated by the cyclic operad ESO

2
(Proposition 4.16) we get a classification of

symmetric monoidal functors out of the handlebody category

Corollary 4.25. There is an equivalence

Fun
⊗ (Hbdy,V) ≃ {(𝐴, 𝜏) | 𝐴 ∈ AlgESO

2

(V), 𝜏 :

∫
𝑆2

𝐴 −! 1 SO(3)-invariant and non-deg.}

In the case of V = k − Cat (up to the caveats in Remark 1.3) this gives an alternative description of

the ansular functors from [MW23]. (This is not very surprising, as our reasoning here is analogous

to the reasoning used in [MW20; MW23] where the authors also use cyclic operads and their

envelopes.)

An analogous universal property holds for the category Env(Ind
mod

cyc
(E∞)) from Remark 4.18.

5 The genus filtration

In the previous lecture we discussed that the handlebody modular operad H is freely generated

by its genus 0 part Hsph
, which in turn is equivalent to ESO

2
. Together with the description

of cyclic operads as operads with dualising modules, this allowed us to “classify” symmetric

monoidal functors Hbdy = Env(H) ! C in terms of ESO

2
-Calabi–Yau algebras in C. Since the map

𝜕 : H ! M = B2 that sends a handlebody to its boundary is a bĳection on 𝜋0, this recovers the

classification of 2D TFTs in Vect𝑘 . For more general targets C ∈ Cat
⊗
∞ the restriction

Fun
⊗ (Bord2, C) −! Fun

⊗ (Hbdy, C)

along 𝜕 won’t be an equivalence, but in this lecture we will see that it is the starting point of

a convergent tower that computes the space of 2D TFTs valued in C. Since the cyclic operads

ESO

2
≃ Hsph ≃ Msph

agree, we can think of H ≃ Ind
mod

cyc
(ESO

2
) as a “genus 0 approximation” to M.

We’ll now construct higher genus approximations and study their convergence.
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5.1 Filtering modular operads

Graded modular operads. To define graded modular operads we need to add “genus gradings”

to our graphs. This can be done using the grading modular operad from Example 2.16.

Definition 5.1. The category of graded graphs gGr is defined as the unstraightening

gGr ≔ Un(Gr gr

−−! Set ⊂ S)

of the grading modular operad gr.

Therefore a graded graph is a graph Γ together with a grading 𝑙 : 𝑉 (Γ) ! N and the morphisms

in the category are such that they add the grading of vertices that are identified plus one for every

loop that is collapsed. Using this we define the category of graded modular operads as Segal

objects

grModOp ≔ Seg(gGr) ≃ Seg(Gr)/gr
= (ModOp)/gr

.

(The comparison functor grModOp! ModOp is defined by left Kan extending along gGr! Gr.
This preserves the Segal condition and sends the terminal graded modular operad to gr. This is an

instance of a general principle for left fibrations over algebraic patterns [HK21, Proposition 3.2.5])

Both the surface and the handlebody modular operad are graded with

M(𝔠 (𝑔)
𝑘

) = 𝐵Diff(Σ𝑔,𝑘)

where 𝔠
(𝑔)
𝑘

denotes the arity 𝑘 corolla 𝔠𝑘 , labelled by 𝑔 ∈ N. Alternatively, we can describe the

grading as a map M! gr that records the genus of each of the components.

Bounding genus. We can define a filtration

gGr≤0 ⊂ gGr≤1 ⊂ gGr≤2 ⊂ · · · ⊂ gGr

where gGr≤𝑔 ⊂ gGr is the full subcategory on those graded graphs (Γ, 𝑙) such that 𝑙 (𝑣) ≤ 𝑔 for all

𝑣 ∈ 𝑉Γ. We refer to the Segal spaces over these graph patterns as genus-restricted modular operads

and denote the category by

grModOp
≤𝑔

≔ Seg(gGr≤𝑔).

Genus ≤ 0 restricted modular operads are in fact just cyclic operads:

Lemma 5.2. Restriction along the full inclusion 𝑖 : Tree ↩! gGr≤0 induces an equivalence

𝑖∗ : Seg(gGr≤0) ≃
−−! Seg(Tree) = CycOp

whose inverse is given by right Kan extension. In particular, every Segal space on gGr≤0 is right Kan
extended from the full subcategory Tree.

Proof idea. It suffices to show that right Kan extension preserves the Segal condition. (Then it will

define a fully faithful right adjoint, but 𝑖∗ is conservative because Tree contains all the elementary

graphs of gGr≤0

, so the adjunction is an equivalence.) Because the Segal condition can be expressed
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as the functor on inerts being right Kan extended from elementaries, this follows by checking that

the square of inclusions

Treeint (gGr≤0)int

Tree gGr≤0

𝑖int

𝑗 𝑘

𝑖

satisfies that the Beck–Chevalley transformation 𝑖∗𝑘 int

∗ ! 𝑗∗ (𝑖int)∗ is an equivalence. This amounts

to showing that the functor

Treeint ×(gGr≤0 ) int (gGr≤0)int

Γ/ −! Tree ×gGr≤0 gGr≤0

Γ/

is initial. This is indeed the case because this functor has a a right adjoint, given by sending

𝑓 : Γ ! Λ to the inert part 𝑓 int
: Γ ↣ Λ′

of the unique inert-active-factorisation of 𝑓 . (This is

well-defined, because if Λ is a tree and 𝑓 act
: Λ′ ⇝ Λ in gGr≤0

is active, then Λ′
is also a tree.) □

Remark 5.3. Lemma 5.2 is an instance of a general principle for algebraic patterns [CH21, Definition

14.7], see also [Bar22, Corollary 2.64]: for any algebraic pattern P we can form a full subcategory

Psl ⊂ P , which contains all those objects 𝑥 for which there exists an active map 𝑥 ⇝ 𝑒 with 𝑒

elementary. This full subcategory inherits the pattern structure and the restriction along the full

inclusion 𝑖 : Psl ↩! P induces an equivalence

𝑖∗ : Seg(P) ≃
−−! Seg(Psl)

whose inverse is given by right Kan extension. In the example of Lemma 5.2, if we have an active

morphism Γ ⇝ 𝔠
(0)
𝑘

, then Γ must be a tree, as otherwise the corolla would have to be labelled by a

positive number. Therefore the slim subpattern of gGr≤0

is exactly Tree.

Restricting along the inclusions 𝑖
𝑔′
𝑔 : gGr≤𝑔 ↩! gGr≤𝑔′

preserves the Segal condition and thus we

get a tower

grModOp −! . . . −! grModOp
≤2 −! grModOp

≤1 −! grModOp
≤0 ≃ CycOp.

Because the filtration of gGr was exhaustive (as every graded graph lies in gGr≤𝑔 for some 𝑔) this

tower converges in the sense that

grModOp ≃ lim

𝑔!∞
grModOp

≤𝑔
.

Inducing up. So far we have described how to approximate the ∞-category of modular operads,

but really we would like to approximate objects of this category, such asM, rather than the category

itself. In other words, having found the right categorical setting, we should now “go down one

category level” to reap the benefits. (In fact, we’ll want to go two category levels, because what

we truly care about are modular algebras, which are maps of modular operads.) To do this,

we’ll approximate M ∈ grModOp by the modular operad freely built from the restricted modular

operads (𝑖∞𝑔 )∗M ∈ grModOp
≤𝑔

. This means that we’ll consider the left adjoints, for 𝑔 ≤ 𝑔′,

Ind
𝑔′
𝑔 : grModOp

≤𝑔 ⇄ grModOp
≤𝑔′

: (𝑖𝑔
′

𝑔 )∗.
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These left adjoints exist for fairly formal reasons, but more importantly, they are actually computable

in terms of left Kan extension.

Lemma 5.4. Left Kan extension along 𝑖
𝑔′
𝑔 preserves Segal spaces and thus defines a left-adjoint

Ind
𝑔′
𝑔 = (𝑖𝑔

′
𝑔 )! : grModOp

≤𝑔
= Seg(gGr≤𝑔) ⇄ Seg(gGr≤𝑔′ ) = grModOp

≤𝑔′
: (𝑖𝑔

′
𝑔 )∗.

In particular, the left adjoint Ind
𝑔′
𝑔 is fully faithful.

Proof. This can be deduced formally from the theory of algebraic patterns [CH21; CH23] once one

checks that Gr is a soundly extendable pattern. □

Definition 5.5. For a graded modular operadM and 0 ≤ 𝑔 ≤ ∞we define its genus 𝑔 approximation

to be the graded modular operad

O (𝑔) ≔ Ind
𝑔′
𝑔 ((𝑖𝑔

′
𝑔 )∗O).

These assemble into the genus filtration of O

O (0) −! O (1) −! O (2) −! . . .O.

Because all these constructions are functorial the genus filtration defines a functor

grModOp −! Fun((N, ≤), grModOp).

It follows formally that this filtration is convergent, that is, O = colim𝑔!∞ O (𝑔)
.

Example 5.6. By Proposition 4.16 we have that

M(0) ≃ H (0) ≃ H.

5.2 The filtration on M

Restricted cut systems. In order to compute M(𝑔)
we introduce the following variant of cut

systems.

Definition 5.7. Let Σ be a surface and 0 ≤ 𝑔 ≤ ∞. We say that 𝑆 ⊂ Σ is a genus ≤ 𝑔 cut system if

1. 𝐶 is a disjoint union of essential curves

2. each component of Σ \ 𝐶 has genus at most 𝑔.

The set of all genus ≤ 𝑔 cut systems is topologised with the 𝐶∞
-topology and forms a topological

poset Cut
𝑔 (Σ) under ⊆.

This topological poset appears naturally when computing the genus 𝑔 approximation of M.
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Lemma 5.8. For all 𝑔, 𝑔′, 𝑘 ∈ N there are equivalences

M(𝑔) (𝔠 (𝑔
′ )

𝑘
) ≃ |Cut

𝑔 (Σ𝑔,𝑘) |//Diff(Σ𝑔,𝑘)

and thus there are fiber sequences

|Cut
𝑔 (Σ𝑔,𝑘) | −!M(𝑔) (𝔠 (𝑔

′ )
𝑘

) −!M(𝔠 (𝑔
′ )

𝑘
).

Proof idea. We can compute M(𝑔)
as a left Kan extension along 𝑖

𝑔′
𝑔 . The pointwise formula for left

Kan extension gives

M(𝑔) (𝔠 (𝑔
′ )

𝑘
) = colim

Γ∈gGr≤𝑔
/𝔠 (𝑔

′ )
𝑘

M(Γ).

Here the colimit runs over the category of maps Γ ! 𝔠
(𝑔′ )
𝑘

in gGr where Γ ∈ gGr≤𝑔. By definition

M(Γ) is the groupoid of triples (𝑊, 𝑆, 𝛼) where 𝑊 is a surface, 𝑆 ⊂ 𝑊 is a cut system, and

𝛼 : Δ𝑆⊂𝑊 � Γ is a (grading preserving) graph isomorphism. We know from the dual graph that 𝑊

must be diffeomorphic to Σ𝑔′ ,𝑘 , so we can write

M(Γ) ≃ {(𝑆, 𝛼) | 𝑆 ⊂ Σ𝑔,𝑘 , 𝛼 : Δ𝑆⊂𝑊 � Γ}//Diff(Σ𝑔,𝑘).

Inserting this in the colimit and doing some rewriting we get the desired result. (At some point we

need to get rid of non-essential spheres, but those do not change the homotopy type of Cut
𝑔 (Σ𝑔′ ,𝑘)

by a cofinality argument. □

For example, if 𝑔′ ≤ 𝑔, then the empty cut system is allowed in Cut
𝑔 (Σ𝑔′ ,𝑘) and it is an initial

element in this poset. Therefore the realisation of the poset is contractible an d we get that

M(𝑔) (𝔠 (𝑔
′ )

𝑘
) ≃ |Cut

𝑔 (Σ𝑔,𝑘) |//Diff(Σ𝑔,𝑘) ≃ ∗//Diff(Σ𝑔,𝑘) ≃ M(𝔠 (𝑔
′ )

𝑘
)

as expected, since Ind
∞
𝑔 is fully faithful and does not change the value on graphs that are bounded

by 𝑔.

The curve complex. The first interesting case is that of 𝑔′ = 𝑔 + 1. For simplicity, let us assume

that 𝑘 = 0 and 𝑔 ≥ 2. Then every non-empty system of essential curves is allowed in Cut
𝑔 (Σ𝑔+1) and

thus we can identify this topological poset with the poset of simplices of the curve complex:

|Cut
𝑔 (Σ𝑔+1) | ≃ 𝐶 (Σ)

The curve complex 𝐶 (Σ) is the (discrete) simplicial complex where vertices are isotopy classes

essential curves in Σ and where 𝑛 + 1 vertices form a simplex if the essential curves can be made

disjoint.

Theorem 5.9 (Harer, Ivanov, [Har86; Iva87]). For 𝑔 ≥ 2, the curve complex 𝐶 (Σ𝑔) is equivalent to an
infinite wedge of spheres of dimension 2𝑔 − 2. Moreover, 𝐻2𝑔−2 (𝐶 (Σ𝑔)) is a virtual dualising complex
of dimension 4𝑔 − 4 for the mapping class group Γ𝑔 ≔ 𝜋0Diff(Σ𝑔), meaning in particular that there are
isomorphisms in rational homology

𝐻𝑘

(
𝐶 (Σ𝑔)//Γ𝑔;Q

)
� 𝐻6𝑔−6−𝑘 (𝐵Γ𝑔;Q)
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Convergence. Using Theorem 5.9 one can show, with a bit more work, that the map from the

genus 𝑔 approximation of M to M is highly connected

Corollary 5.10. The map M(𝑔) (Γ) !M(Γ) is (2𝑔 − 1)-connected.

Proof idea. It will suffice to show this claim for the map M(𝑔) (Γ) !M(𝑔+1) (Γ), as the map to M(Γ)
is the transfinite composite of such maps and the connectivity only increases. Moreover, it will

suffice to show this when Γ ∈ gGr≤𝑔+1

, as both M(𝑔)
and M(𝑔+1)

are left Kan extended from this

category and (2𝑔−1)-connected maps are stable under colimits. As both modular operads have the

same space of objects, the Segal condition reduces the claim to the value at 𝔠
(𝑔′ )
𝑘

for 0 ≤ 𝑔′ ≤ 𝑔 + 1.

But the modular operads also agree in genus < 𝑔 + 1, so we really just need to show that the map

M(𝑔) (𝔠 (𝑔+1)
𝑘

) −!M(𝑔+1) (𝔠 (𝑔+1)
𝑘

) = M(𝔠 (𝑔+1)
𝑘

) = 𝐵Diff(Σ𝑔+1,𝑘)

has (2𝑔 − 1)-connected fibers. When 𝑘 = 0 this follows from lemma Lemma 5.8 since the curve

complex 𝐶 (Σ𝑔+1) is equivalent to

∨
∞ 𝑆2𝑔

by Harrer and Ivanov’s theorem (Theorem 5.9), which is

indeed (2𝑔 − 1)-connected. In the case of 𝑘 > 0 we don’t quite get the curve complex, but the fiber

is still (2𝑔 − 1)-connected, though we will not show this here. □

Modular algebras in (𝑛, 1)-categories. We can summarise this by saying that

“the genus filtration converges with slope 2.”

A concrete consequence of this is that when considering modular M-algebras in an (𝑛, 1)-category

it suffices to consider operations of genus ≤ 𝑛/2. Recall that a symmetric monoidal (𝑛, 1)-category

is a symmetric monoidal ∞-category C ∈ Cat
⊗
∞ such that for any two objects 𝑥, 𝑦 ∈ C and the

mapping space MapC (𝑥, 𝑦) is (𝑛− 1)-truncated, meaning that 𝜋𝑘 (MapC (𝑥, 𝑦), 𝑓 ) = 0 for all 𝑘 > 𝑛− 1

and 𝑓 : 𝑥 ! 𝑦.

Corollary 5.11. If C is a symmetric monoidal (𝑛, 1)-category and 2𝑔 ≥ 𝑛, then the restriction map

AlgM (C) −! AlgM(𝑔) (C)

is an equivalence.

Proof. By assumption on C the spaces of operations

Udual (C) (𝑥1, . . . , 𝑥𝑛) ≃ MapC (𝑥1 ⊗ · · · ⊗ 𝑥𝑛,1)

are (𝑛 − 1)-truncated. For the purpose of this proof we will pretend that this means that, via

the Segal condition, Udual (C) (Γ) is (𝑛 − 1)-truncated for all Γ ∈ Gr. This is not quite true as

Udual (C) (𝔢) = (Cdbl)≃ is an 𝑛-groupoid, but we can effectively ignore the space of objects (or change

it using a DK-equivalence) as M(𝑔) (𝔢) !M(𝔢) is an equivalence. Up to this caveat the claim now

follows because M(𝑔) !M is a pointwise (2𝑔 − 1)-connected map in Fun(Gr, S) and Udual (C) is

(basically) a (𝑛 − 1)-truncated object in this category. Thus, as long as 2𝑔 − 1 ≥ 𝑛 − 1 every map

M(𝑔) ! Udual (C) uniquely extends to M. □
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Example 5.12. If C = LinCat𝑘 is the (2, 1)-category of 𝑘-linear categories (with the caveats from

Remark 1.3), then for symmetric monoidal functors Bord2 ! LinCat𝑘 we get an equivalence

Fun
⊗ (Bord2,LinCat𝑘) = AlgM (LinCat𝑘)

≃
−−! AlgM(1) (LinCat𝑘).

In other words, a modular functor is uniquely determined by what it does in genus ≤ 1, and to

define a modular functor we only need to give a map of genus ≤ 1 restricted modular operads.

Remark 5.13. For 𝑛 = 1 Corollary 5.11 only tells us that for every symmetric monoidal 1-category

C the restriction

Fun
⊗ (Bord2, C) = AlgM (C) ≃

−−! AlgM(1) (C)

is an equivalence, but we know from Theorem 1.2 that in fact even the restriction to genus 0

uniquely determines a 2D TFT. The issue here is that the map of modular operads

H = M(0) −!M

is a bĳection on 𝜋0, but it is only (−1)-connected and not 0-connected. For it to be 0-connected

it would have to induce a surjection on 𝜋1, but in fact the mapping class groups of handlebodies

inject into the mapping class groups of surfaces. Presumably this indicates that if in Corollary 5.11

we were to work with the notion of “becomes an equivalence after (𝑛 − 1)-truncation” rather than

the notion of “(𝑛 − 1)-connected map”, then we might obtain a slightly better bound.

5.3 Extending from genus 𝑔 to 𝑔 + 1

In the previous section we set up a convergent filtration of M so that when studying M-algebras

in C we get a convergent tower

Fun
⊗ (Bord2, C) = Alg

mod

M (C) −! . . . −! Alg
mod

M(2) (C) −! Alg
mod

M(1) (C) −! Alg
mod

M(0) (C).

Our goal now will be to understand how to step up this tower one genus at a time. For example,

we observed that for studying (underived) modular functors are uniquely determined in genus

≤ 1, and as we already understand cyclic algebras it suffices to study how to extend from genus 0

to genus 1. The key idea will be to think of the value of M in genus 1 as a right module over the

operad that we obtain by restricting M to genus 0. As before it will be easier to first study this

problem one (or in fact two) category levels up, that is, to study the restriction functor

(𝑖𝑔
𝑔−1

)∗ : grModOp
≤𝑔 ! grModOp

𝑔−1

.

Genus 𝑔 is a right modules over genus 0. For a (genus restricted) modular operad O, let O0 ≔

O |𝑔≤0
denote the genus 0 part of O, thought of as an operad, rather than a cyclic operad. Then

there is a functor

grModOp
≤𝑔 −! rMod

O 7−! (O0,O(𝔠 (𝑘 )• ))
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that records all the genus 𝑔 operations of the modular operad as a right module over the genus

0 operations. To construct this functor we can use that O forgets to a cyclic operad, which then

induces a right module over itself (via Proposition 4.5) as (O, 𝜔O) ∈ rMod
dual

. Then restrict to the

genus 0 part of O and the genus 𝑔 part of 𝜔O . Of course the resulting right module O(𝔠 (𝑘 )• ) is no

longer a dualising module.

Example 5.14. In the case of M we have M0 = ESO

2
and we can describe the right module M(𝔠 (𝑔)• )

as the disk presheaf(
M(𝔠 (𝑔)• ) : ⊔𝑘 𝐷

2 7−! Emb(⊔𝑘𝐷
2, Σ𝑔)//Diff(Σ𝑔)

)
∈ PSh(Disk2)

or more concisely as 𝐸Σ𝑔
//Diff(Σ𝑔). Note that in arity 𝑘 this indeed gives

17

Emb(⊔𝑘𝐷
2, Σ𝑔)//Diff(Σ𝑔) ≃ 𝐵Diff𝜕 (Σ𝑔,𝑘).

Concatenating this with the induction functor Ind
𝑔

𝑔−1
we obtain the following functor.

Definition 5.15. For 𝑔 ≥ 1 the 𝑔 latching module of a genus ≤ (𝑔 − 1) restricted modular operad

O ∈ grModOp
≤𝑔−1

is defined as

𝐿𝑔O ≔ (Ind
𝑔

𝑔−1
O) (𝔠 (𝑔−1)

• ) ∈ rModO0

which assembles into a functor

grModOp
≤𝑔−1 −! rMod

O 7−! (O0, 𝐿𝑔O).

Example 5.16. In the case of M we compute the 𝑔 latching module 𝐿𝑔M by using Lemma 5.8 and

manipulating colimits.

𝐿𝑔M(⊔𝑘𝐷
2) ≃ |Cut

𝑔−1 (Σ𝑔,𝑘) |//Diff𝜕 (Σ𝑔,𝑘)

≃
(

colim

𝑖 : ⊔𝑘𝐷
2↩!Σ𝑔

|Cut
𝑔−1 (Σ𝑔 \ 𝑖(⊔𝑘𝐷

2)) |
)
//Diff(Σ𝑔)

≃
(

colim

𝑆∈Cut
𝑔−1 (Σ𝑔 )

Emb(⊔𝑘𝐷
2, Σ𝑔 \ 𝑆)

)
//Diff(Σ𝑔)

So we can write the latching module as

𝐿𝑔M ≃
(

colim

𝑆∈Cut
𝑔−1 (Σ𝑔 )

𝐸Σ𝑔\𝑆

)
//Diff(Σ𝑔).

17
To see this, consider the Palais fiber sequence

Diff𝜕 (Σ𝑔,𝑘 ) ≃ Diff⊔𝑘𝐷
2 (Σ𝑘 ) −! Diff(Σ𝑘 ) −! Emb(⊔𝑘𝐷

2, Σ𝑘 )

and deloop it / apply the homotopical orbit-stabiliser lemma [BBS24, Lemma 2.11].

52



Main theorem. We now have all the tools at hand to describe the fiber of the restriction functor.

Theorem 5.17 ([*genus]). For every genus ≤ 𝑔 − 1 restricted modular operad O there is an equivalence

fibO
(
grModOp

≤𝑔 −! grModOp
≤𝑔−1

)
≃ (rModO0

)𝐿𝑔/

induced by the functors described above.

The restriction functor grModOp
≤𝑔 −! grModOp

≤𝑔−1

is a cocartesian fibration and the above

theorem describes its fibers one at a time. A slightly more sophisticated version of the theorem

describes the entire fibration by showing that it fits into a cartesian square

grModOp
≤𝑔

Ar
vert (rMod)

grModOp
≤𝑔−1

rMod

𝐿𝑔!O (𝔠 (𝑔)• )

⌟
𝑠

𝐿𝑔

where Ar
vert (rMod) = Op∞ ×

Ar(Op∞ ) Ar(rMod) is the vertical arrow category, i.e. it is the full

subcategory of Ar(rMod) on those morphisms that map to equivalences in Op∞.

Let’s apply this to M algebras in a symmetric monoidal ∞-category V ∈ Cat
⊗
∞. Fix an M(𝑔−1)

-

algebra 𝐴 ∈ Alg
mod

M(𝑔−1) . Then the space of lifts of 𝐴 to an M(𝑔)
algebra is the space of extensions


𝐿𝑔M

M(𝔠 (𝑔)• ) Udual (C)

𝐴 ∈ rModM0


≃


colim

𝑆∈Cut
𝑔−1 (Σ𝑔 )

𝐸Σ𝑔\𝑆

𝐸Σ𝑔
Udual (C)

𝐴 ∈ PSh(Disk2)𝐵Diff(Σ𝑔 )


If V has sufficient colimits and the tensor product preserves them then we can further rewrite this

as an extension problem in the ∞-category of Diff(Σ𝑘)-representations in C where we equip 1C
with the trivial action.

Corollary 5.18. For V a symmetric monoidal ∞-category with sifted colimits, which are preserved by the
tensor product, the space of lifts of an M(𝑔−1) -algebra 𝐴 to an M(𝑔) is

fib𝐴

©­­­­­«
AlgM(𝑔) (V)

AlgM(𝑔−1) (V)

ª®®®®®¬
≃



colim

𝑆∈Cut
𝑔−1 (Σ𝑔 )

∫
Σ𝑔\𝑆 𝐴

∫
Σ𝑔

𝐴 1C

∈ C𝐵Diff(Σ𝑔 )


Remark 5.19. While this might seem like quite a complicated expression, it is useful because it

“linearises” the problem. We started out with the task of defining a (modular) algebra and now

this task has been split up into giving a algebra over the ordinary operad ESO

2
and a sequence of

maps of right modules over ESO

2
. It would be interesting to see whether one can use this to, for

example, study the deformation theory of 2D TFTs.
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5.4 Field theoretic interpretation

Correlation functions. We now give an interpretation of the inductive description of M-algebras

in Theorem 5.17 in more field theoretic terms. Suppose we are given a symmetric monoidal functor

Z : Bord2 −! V

where V is a symmetric monoidal category with suitable colimits. The value at 𝑆1
is anESO

2
-algebra

𝐴 ≔ Z (𝑆1) ∈ Alg
ESO

2

(V),

which is referred to as the algebra of local operators or point operators [FH21, Remark 2.35]. This

can be thought of as the space of possible fields inside a small disk, as observed through the

boundary 𝑆1
of that disk. The algebra structure allows us to combine such operators.

Suppose we now fix a closed genus 𝑔 surface Σ𝑔. Then for any configuration of 𝑘 framed points on

Σ𝑘 , given by an embedding ⊔𝑘𝐷
2 ↩! Σ𝑘 , we can construct a bordism Σ𝑔 \ ⊔𝑘𝐷

2
: ⊔𝑘 𝑆

1 −! ∅ and

applying Z to this bordism yields a map

Z (Σ𝑔 \ ⊔𝑘𝐷
2) : 𝐴⊗𝑘 = Z (⊔𝑘𝑆

1) −! Z (∅) = 1.

When V = Vect this sends a tensor product of operators to a number, and this corresponds to

“inserting” the operators at the points on Σ𝑔 prescribed by the disks, and then “measuring” the

“cross-section” of the resulting interaction. We can thus think of Z (Σ𝑔 \ ⊔𝑘𝐷
2) as the correlation

function of the operators [FH21, Remark 2.36]. When two operators are inserted nearby we can

instead merge them using the algebra multiplication on 𝐴 = Z (𝑆1) and as we can do this for

arbitrary configurations, the correlation functions at various points assemble into a map

Z𝑔 :

∫
Σ𝑔

𝐴 −! 1,

which by nature of its construction will also be Diff(Σ𝑔)-invariant. We call this the universal genus

𝑔 correlation function.

An inductive description. Suppose we have a TFT that is only defined in genus ≤ 𝑔 − 1. This

can be made precise by saying that it is a modular algebra over M(𝑔−1)
or equivalently, a map of

genus-restricted modular operads M | ≤𝑔−1
! Udual (V), but we’ll think of it as a kind of partially

defined symmetric monoidal functor Z : Bord2 ↛ V that is only defined on surfaces whose path

components are of genus ≤ 𝑔 − 1.
18

Then, given such a genus restricted TFT, we can define a

correlation-constraint in genus 𝑔

Zcut

𝑔 :

∫ <𝑔

Σ𝑔

𝐴 −! 1

where the restricted factorisation homology is defined as a colimit over the poset of systems of

essential curves ∫ <𝑔

Σ𝑔

𝐴 ≔ colim

𝑆∈Cut
<𝑔 (Σ𝑔 )

∫
Σ𝑔\𝑆

𝐴.

18
In fact, it’s possible to make this notion precise, but comparing it to genus-restricted modular operads seems non-trivial.
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To make precise the construction of the correlation-constraint Zcut

𝑔 we essentially have to take the

construction from Corollary 5.18, but more conceptually speaking we can also describe it in terms

of Z : Bord2 ↛ V . For each system of essential curves 𝑆 ⊂ Σ𝑔 and embedding ⊔𝑘𝐷
2 ↩! Σ𝑔 \ 𝑆 the

functor Z gives us a map

Z (Σ𝑔 \ (𝑆 ⊔ ⊔𝑘𝐷
2)) : Z (𝑆1)⊗𝑘 −! Z (2𝑆)

where 2𝑆 is the spherical normal bundle of 𝑆 ⊂ Σ𝑔, which contains two circles for each curve in 𝑆.

Assembling this into a map out of factorisation homology and composing with evaluation pairings

Z (𝑆1 ⊔ 𝑆1) ! 1 we get a map ∫
Σ𝑔\𝑆

𝐴 −! 𝐴⊗2𝑆 ev

−−! 1

As we add or remove curves from 𝑆 this assembles into a map out of the colimit

∫ <𝑔

Σ𝑔
𝐴.

With this notation at hand, we can now give the following inductive description of 2D TFTs.

Corollary 5.20. From a genus (𝑔−1)-restricted TFTZ one can canonically construct a Diff(Σ𝑔)-equivariant
“correlation constraint”

Z<𝑔
𝑔 :

∫ <𝑔

Σ𝑔

𝐴 −! 1.

Extending Z to a genus 𝑔-restricted TFT is equivalent to constructing an extension∫ <𝑔

Σ𝑔
𝐴

∫
Σ𝑔

𝐴 1

Z<𝑔
𝑔

Z𝑔

in the ∞-category Fun(𝐵Diff(Σ𝑔),V).

Thus defining a 2D TFT valued in V is equivalent to giving a (cyclic) ESO

2
-algebra in V and a

family of universal genus 𝑔 correlation functions, each compatible with the correlation constraint

constructed from the lower genus data.

Remark 5.21. While this might seem like a lot of data, the map

∫ <𝑔

Σ𝑔
𝐴!

∫
Σ𝑔

𝐴 might simply be an

equivalence in situations we care about, thus trivialising the extension problem. By Corollary 5.11

this for example happens when V is an (𝑛, 1)-category and 2𝑔 ≥ 𝑛.

Remark 5.22. Brochier–Woike give a classification of modular functors that uses factorisation

homology in a similar way to how it appears here [BW22]. They work in a (2, 1)-categorical setting,

which according to our heuristic should imply that the TFT is determined in genus ≤ 1, but they

are in fact able to reduce it to the genus 0 classification of [MW23], by allowing suitable central

extensions of the mapping class groups involved.
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5.5 A spectral sequence involving the homology of mapping class groups

Invertible 2D TFTs and the GMTW theorem. So far we have mostly considered examples where

the target category C was truncated or admitted some colimits. The classification result also

turns out to be interesting when we we consider the exact opposite case: invertible TFTs. Let

𝑋 ∈ Sp be any connective spectrum and Ω∞𝑋 its infinite loop space, which we can think of as a

symmetric monoidal groupoid where every object is invertible. Then invertible TFTs valued in 𝑋

are symmetric monoidal functors

Bord2 −! Ω∞𝑋.

We can compute the space of such functors using the Galatius–Madsen–Tillmann–Weiss theorem

|Bord2 | ≃ Ω∞ΣMTSO(2) [Gal+09] and the adjunction

| − |gp

: Cat
⊗
∞ ⇄ Ω∞

-spaces ≃ Sp≥0
:Ω∞

where the left-adjoint inverts all morphisms in a symmetric monoidal ∞-category and then group-

completes the resulting symmetric monoidal groupoid. (This last step won’t be necessary for us,

as the symmetric monoidal envelope of a modular operad is always rigid and thus its groupoidifi-

cation is group-like.) Plugging in [Gal+09] we get

Fun
⊗ (Bord2,Ω

∞𝑋) ≃ Map
Ω∞ ( |Bord2 |,Ω∞𝑋) ≃ Map

Sp
(𝜏≥0ΣMTSO(2), 𝑋).

The spectrum MTSO(2) is a Thom spectrum, which differs from Σ∞
+ CP

∞
only by a cell in degree −2.

In fact, as we’ll mostly be working rationally in this section, we might as well think of 𝜏≥0ΣMTSO(2)
as Σ∞+1CP∞+ . In light of this fairly succinct classification of invertible 2D TFTs it might seem odd to

apply the inductive classification result Theorem 5.17 to it, however, it turns out that in this case

the obstruction in each genus step is quite interesting in its own right.

The genus filtration on MTSO(2). From the genus filtration on M we get a convergent filtration

of the classifying space of the surface category as

|Env(M(0) ) | −! |Env(M(1) ) | −! |Env(M(2) ) | −! . . . −! |Env(M) | = |Bord2 | = Ω∞−1

MTSO(2)

which can be delooped to give a convergent filtration of 𝜏≥0ΣMTSO(2). (Here filtration just

means a functor from (N, ≤) and convergent means that the colimit is as indicated.) By applying

Corollary 4.22 and Theorem 5.17 in the case of invertible TFTs we can compute the initial term and

the assoiciated graded of this filtration.

Corollary 5.23. The 0th step of the filtration is

Σ∞+1𝐵SO(3)+

and the 𝑔th associated graded is

Σ∞𝑆

( |Cut
<𝑔 (Σ𝑔) |

Diff(Σ𝑔

)
where 𝑆 denotes unreduced suspension.
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For 𝑔 ≥ 2 we can identify the space of cut systems with the curve complex 𝐶 (Σ𝑔). Let us write

Γ𝑔 ≔ 𝜋0 (Diff(Σ𝑔)) for the genus 𝑔 mapping class group. As recalled in Theorem 5.9 it is a theorem

of [Har86; Iva87] that 𝐶 (Σ𝑔) is a virtual dualising complex for Γ𝑔 and that thus the 𝑘th rational

homology of the homotopy quotient 𝐶 (Σ𝑔)//Γ𝑔 is isomorphic to the group cohomology of Γ𝑔 in

degree 6𝑔 − 6 − 𝑘 . Assembling all this (and shifting down by one) we get the following spectral

sequence from the filtered spectrum Σ𝜏≥0MTSO(2).

Corollary 5.24. There is a convergent spectral sequence in rational vector spaces

𝐸1

𝑔,𝑘 =


𝐻𝑘 (𝐵SO(3);Q) for 𝑔 = 0

𝐻𝑘−1 (𝐵Diff(𝑆1 × 𝑆1)/𝐵Diff(𝑆1 × 𝐷2);Q) for 𝑔 = 1

𝐻5𝑔−6−𝑘 (𝐵Γ𝑔;Q) for 𝑔 ≥ 2

⇒ 𝐻𝑔+𝑘 (CP∞).

Note that the cohomology of CP∞ has dimension 1 in even degrees and is 0 in odd degrees. The

classes in degrees 0 mod 4 are accounted for by the 0th column, which survives to the 𝐸∞
-page.

Thus there must be exactly one class in each degree 4𝑖 + 2 that survives to the 𝐸∞
-page and every

other class must cancel in some way. See Fig. 3 for a picture of the 𝐸1
page, to the extend that

𝐻∗ (𝐵Γ𝑔;Q) is known.

Example 5.25. The picture of the 𝐸1
-page of the genus spectral sequence in Fig. 3 contains infor-

mation from several sources. The computation in genus 𝑔 = 3, 4 is due to Looĳenga [Loo93] and

Tommasi [Tom05]. In the dark green region we know homological stability and thus by [MW07]

the cohomology is a polynomial ring on the Miller–Morita–Mumford classes 𝜅𝑖 . These classes

generate the “tautological ring”, which is known to have interesting structure, see eg. [Fab99]. The

purple classes are the top weight classes found by [CGP21] Cyan classes indicate classes that must

survive to the 𝐸∞
-page, the dashed cyan lines indicate that there must be exactly one class on them

that survives to the 𝐸∞
page. The 𝑑2 and 𝑑4 differential can be deduced from the map of spectral

sequences obtained by considering the same filtration for the terminal graded modular operad gr.
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